A Smart Cache for a SmartNIC!
Rethinking Caching, Locality, & Revalidation for Modern Virtual Switches

Annus Zulfigar®, Ali Imran®, Venkat Kunaparaju“, Ben Pfaff*, Gianni Antichi*, Muhammad Shahbaz
University of Michigan ' Purdue University *Feldera *Politecnico di Milano — *Student

1 MOTIVATION & GOALS

Virtual Switches (vSwitches) are vital components in mod-
ern data center networks, providing a unified interface to
enforce high-level policies on incoming packets and route
them to physical interfaces, containers, or virtual machines.
As performance demands escalate, there has been a shift to-
ward offloading vSwitch processing to SmartNICs to alleviate
CPU load and improve efficiency. However, existing solu-
tions struggle to handle the growing flow rule space within
the NIC, leading to high miss rates and poor scalability.

We introduce GIGAFLOW, a novel caching system designed
for SmartNICs to accelerate vSwitch packet processing. Our
core insight is that by harnessing the inherent pipeline-aware
locality within programmable vSwitch pipelines—defining
policies (e.g., L2, L3, and ACL) and their execution order
(e.g., using P4 and OpenFlow)—we can create cache rules for
shared segments (sub-traversals) within the pipeline, rather
than caching entire flows (Figure 1). These shared segments
can be reused across multiple flows, resulting in higher cache
hit rate (up to 51%) and improved rule-space coverage (up
to 450X%) over traditional caches (i.e., Megaflow) using the
limited memory of today’s SmartNICs—all while operating
at line speed. We also discuss open problems in cache revali-
dation mechanisms and call on the networking community
to creatively address the emerging challenges.

1.1 End-host Networking: Past & Present

Since the late 90s, the end-host networking stack has trans-
formed into a switching substrate built around virtual swit-
ches (vSwitches) [1]. Early incarnations of these vSwitches
primarily mimicked fixed-function hardware switches as
hardcoded software switches (e.g., Linux Bridge and ipta-
bles). We have come a long way since then (a) through a
series of software optimizations aimed at maximizing CPU
performance to (b) leveraging hardware offloads using mod-
ern SmartNICs. Nevertheless, the challenge persists: these
vSwitches struggle to scale effectively with emerging workloads
and increasing link rates.

e Software Optimizations. In software, applying the en-
tire multi-table pipeline—comprising a sequence of network
policies (e.g., L2, L3, or ACL)—within a vSwitch for each

Corresponding author: Annus Zulfiqar (zulfigaa@umich.edu)

—0—0—0 000>

. <
Traversal \/ ~ Table

Lookup
N

(a) Traversal caching using Megaflow

—0—0—0 0 0 0>

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(b) Sub-traversal caching using GiGAFLow

Figure 1: (a) A traversal is a complete sequence of table
lookups through the vSwitch pipeline that generates a
Megaflow rule. (b) A sub-traversal is a subset of these
lookups within a traversal, capturing smaller, reusable
segments shared across multiple flows.

incoming packet is prohibitively expensive. Early optimiza-
tions introduced single-lookup caches, namely Microflow
and Megaflow caches [1], to reduce this overhead. Microflow
caching installs an exact-match rule after processing the first
packet in a flow, while Megaflow uses wildcard rules to han-
dle broader traffic patterns more efficiently. Recent efforts
have improved Megaflow lookup speed using compact ML
models like RQ-RMI [2]. Still, CPU limitations—and the slow-
down of Moore’s Law—cap vSwitch throughput at under 10
Gbps per core.

o SmartNIC Offloads. There is an urgent push within the
networking industry to shift from CPU-based virtual switch-
ing to SmartNICs. Equipped with a hardware (HW) cache,
these NICs can process and route traffic directly to and from
the virtual endpoints (e.g., using SR-IOV), effectively by-
passing software-based processing. These NICs can reach
link speeds of 400 Gbps and higher when the matching rule
is present in the HW cache. However, the main challenge
is the limited size of these HW caches, typically holding
between 10-50K wildcard rules—far fewer than the software-
based caches. This limitation is attributed to the restricted
power budget of SmartNICs, typically around 75 W, and the
complexity of integrating large TCAMs on-chip. As a re-
sult, despite their performance advantages, high miss rates
within these caches result in significantly lower overall ag-
gregate throughput. Thus, most implementations today use
HW caches to handle only a small subset of traffic—primarily
long and bursty flows—while directing the bulk of other traf-
fic to software for processing.


mailto:zulfiqaa@umich.edu

1.2 Towards Smart Virtual Switching

¢ Pipeline-Aware Caching with GicarLow. Traditionally,
vSwitch caching has been guided by two assumptions: (1)
multi-table lookups are expensive, necessitating a single-
lookup cache, and (2) cache-rule generation relies solely
on traffic-derived locality (temporal and spatial). We argue
that it is time to revisit these assumptions. Unlike CPUs,
SmartNICs can perform multi-table lookups in hardware
at line speeds, enabling cross-product rule combinations
that greatly expand rule space beyond physical table limits.
Secondly, vSwitch pipelines are programmable (e.g., using
OpenFlow), letting operators configure the types and order
of policies (e.g., L2, L3, ACL). This introduces a powerful
pipeline-aware locality that extends beyond temporal and
spatial localities.

Traditional caching captures locality in two forms: Mi-
croflow rules exploit temporal locality by caching exact-
match flows, while Megaflow rules use wildcards to capture
spatial locality by grouping flows with overlapping headers.
Pipeline-aware locality, in contrast, leverages the vSwitch
pipeline structure to cache shared sequences of table lookups.
We extend the notion of a traversal [1]—a unique sequence
of table lookups and matched rules that defines a Megaflow
rule (Figure 1a). Each traversal is then broken into smaller,
reusable sub-traversals (Figure 1b), which capture common
lookup patterns across flows. By caching these sub-traversals
in SmartNIC tables, flows can share pipeline segments, en-
abling more scalable and efficient caching.

GrGgarLow: A Sub-Traversal Cache. Building on these
insights—(a) line-rate multi-table lookups in SmartNICs
and (b) Megaflow rules constructed from overlapping sub-
traversals—we design GIGAFLOW, a caching system that max-
imizes rule-space coverage and cache hit rate while main-
taining line-rate performance: upon a cache miss in the NIC,
a mapper in the vSwitch computes a set of candidate sub-
traversals to install in the SmartNIC GicarLow tables. The
candidates are selected such that the cross-product of the
new sub-traversals and the existing ones across all tables in
the NIC maximizes the rule-space coverage.

e Incremental Cache Revalidation. GiGaAFLOw targets
rule-space coverage in hardware, but software-only caches
remain prevalent and suffer performance bottlenecks due to
frequent revalidation. Caching performance depends on its
rule-space coverage, but revalidation overhead scales with
the number of cached entries, constraining practical cache
sizes. Consequently, cache sizes are intentionally limited to
support rapid, sub-second revalidation and maintain correct-
ness. With increasing link speeds and diverse workloads, en-
hancing vSwitch performance necessitates reconsideration
of cache revalidation which currently represents a computa-
tional bottleneck. We propose adopting recent advancements

gcPUlSmartNIC
OFD PSC OLS ANT OTL

100-
80-
60-
40-
20-

OFD PSC OLS ANT OTL

Al

@“o‘< S S S K S JF FF K K
(a) High Locality (b) Low Locality
Figure 2: End-to-end cache hit rate: GicarLow (4x8K)
vs. Megaflow (32K) in high/low locality environments.

Hit Rate %
Hit Rate %

SmartNIC vSwitch Pipelines (§2)

Cache OFD PSC OLS ANT OTL
Megaflow 32K 32K 32K 32K 32K
Gigaflow | 147M 49M 10.8M 13M 48K

Table 1: GicaFLow (4x8K) vs. Megaflow (32K) maxi-
mum rule-space coverage with high-locality.

in Incremental View Maintenance (IVM) from the databases
community to fundamentally rethink cache revalidation. Our
ongoing research reframes cache revalidation as an IVM
problem, significantly reducing complexity from the order
of cached entries (hundreds of thousands) to the order of
number of vSwitch rule updates (few dozens).

2 PRELIMINARY RESULTS

We implement GiGAFLow in the Open vSwitch (OVS) [1] as a
4-table P4 pipeline with 8K entries each (32K entries in total),
and Megaflow as a single P4 table with 32K entries using
the Xilinx’s P4-SDNet compiler on an Alveo U250 FPGA. We
generate traffic with 100K unique flows and test it against five
real-world vSwitch pipelines: Cord OFDPA (OFD, 10 tables),
Pisces L2L3-ACL (PSC, 7 tables), OVN Logical Switch (OLS,
30 tables), Antrea OVS (ANT, 22 tables), and Openflow TTL
(OTL, 8 tables).

Our results show that GicarLow can achieve up to 51%
higher hit rate than a hardware-accelerated Megaflow cache
(Figure 2) while capturing up to 450X more rule space (Ta-
ble 1). On average, in high-locality environments (Figure 2a),
GicarLow vyields a 25% increase in hit rate compared to
Megaflow across all pipelines; in low-locality environments
(Figure 2b), GIGAFLOW performs at par with Megaflow. More-
over, GIGAFLOW is able to capture a rule space of up to 14.7 M
for OFD, whereas Megaflow was limited to only 32K rules
across all pipelines.

REFERENCES

[1] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
Keith Amidon, and Martin Casado. 2015. The Design and Implementa-
tion of Open vSwitch. In USENIX NSDL

[2] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2022. Scaling
Open vSwitch with a Computational Cache. In USENIX NSDL



	References

