
Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines
for Datacenter Networks

Tushar Swamy
Stanford University

United States of America

Annus Zulfiqar
Purdue University

United States of America

Luigi Nardi
Lund University, Sweden
Stanford University, USA

Muhammad Shahbaz
Purdue University

United States of America

Kunle Olukotun
Stanford University

United States of America

ABSTRACT
Support for Machine Learning (ML) applications in networking
has significantly improved over the last decade. The availability
of public datasets and programmable switching fabrics (including
low-level languages to program them) presents a full-stack to the
programmer for deploying in-network ML. However, the diversity
of tools involved, coupled with complex optimization tasks of ML
model design and hyperparameter tuning while complying with the
network constraints (like throughput and latency), puts the onus
on the network operator to be an expert in ML, network design,
and programmable hardware.

We present Homunculus, a high-level framework that enables
network operators to specify their ML requirements in a declara-
tive rather than imperative way. Homunculus takes as input the
training data and accompanying network and hardware constraints,
and automatically generates and installs a suitable model onto the
underlying switching target. It performs model design-space explo-
ration, training, and platform code-generation as compiler stages,
leaving network operators to focus on acquiring high-quality net-
work data. Our evaluations on real-world ML applications show
that Homunculus’s generated models achieve up to 12% better F1
scores compared to hand-tuned alternatives, while operating within
the resource limits of the underlying targets. We further demon-
strate the high performance and increased reactivity (seconds to
nanoseconds) of the generated models on emerging per-packet
ML platforms to showcase Homunculus’s timely and practical
significance.

CCS CONCEPTS
• Networks → In-network processing; Programmable networks;
• Software and its engineering→ Retargetable compilers; •
Computing methodologies → Supervised learning.

KEYWORDS
Per-packet ML; Self-driving Networks; ML Compilers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03…$15.00
https://doi.org/10.1145/3582016.3582022

ACM Reference Format:
Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle
Olukotun. 2023. Homunculus: Auto-Generating Efficient Data-Plane ML
Pipelines for Datacenter Networks. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3582016.3582022

1 INTRODUCTION
It is the reaction time that dictates how robust, performant, and
secure a given network is [101]. For example, (a) mitigating faults
quickly (such as gray failures [42, 101]) minimizes network down-
time and improves availability; (b) reacting to traffic imbalance
due to short-lived traffic bursts lasting a few microseconds (mi-
crobursts) [102], swiftly, alleviates network congestion [27, 37, 56,
91, 99] and server load [2, 51]; (c) identifying malicious behavior
early limits network disruptions and attacks [9, 19, 63, 87]; and so
on. At the same time, dealing with these events requires complex
operations, e.g., Machine Learning (ML) inference, to decide what
actions to perform as events happen, thereby affecting our speed
and response time to tackle such events [80, 85, 97].

Up until now, these inference operations were carried out on a
logically-centralized control plane [63, 86, 91, 99], with decisions
stored as flow rules in the network data plane (i.e., switches and
routers) [18]. The assumption here was that a decision made for
the first packet would remain the same for all subsequent packets
of a given flow (or connection). For routing and switching, where
packets destined for a given destination must always reach the
same server, this holds true. However, for performance and security
objectives (like traffic engineering [9, 12, 22, 57] and threat mitiga-
tion [58]), it is not the case, as network conditions can vary quickly
within the duration of a given flow; hence, rendering any cached
(per-flow) decisions stale and obsolete.

Recently, with the emergence of programmable switches (such as
Intel Tofino [46, 47] having P4 programmable match-action tables
or MATs), SmartNICs and network accelerators (like Microsoft Cat-
apult [75, 76], Azure AccelNet [32], Xilinx Alveo Data Center Accel-
erators [93] having a field-programmable gate array or FPGA), the
network data plane is no longer limited to flow-caching only. These
data planes can now execute more complex operations and ML
models directly in the network at line-rate. For example, a P4-based
switch can execute support-vector machines (SVMs) [30, 40, 63],
K-Means [57], decision trees [5, 50] or binary neural networks
(BNNs) [79, 80] directly in the data plane [97] to carry out tasks

329

https://doi.org/10.1145/3582016.3582022
https://doi.org/10.1145/3582016.3582022
https://doi.org/10.1145/3582016.3582022
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582022&domain=pdf&date_stamp=2023-03-25

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun

Model
Selection

Model
Building

Param.
Tuning

Backend
Compilation

Constraint
Checking

Data Plane Binary

Network
Operators

DNN or
SVM, …

Layers,
Neurons

Learning
Rate,

Batch Size

Switch,
NIC

Input: Dataset, Constraints, Target

(b)(a) Data Plane Binary

HOMUNCULUS
ML Pipeline
Generator

Alchemy Frontend

Optimization Core

Platform-Specific
Backend

Figure 1: Comparison of data-planeMLpipeline development
process. (a) Current approach: requires domain expertise in
model selection, building, hyperparameter tuning, target
compilation, and constraint checking; (b) Homunculus: re-
quires only dataset, network performance constraints, and
target type for resource estimation.

such as packet classification [50], load balancing [2, 51], resource-
aware scheduling [61], and DDoS mitigation [54, 55, 58]. Similarly,
SmartNICs and FPGA-based accelerators [21, 24, 32, 75, 76, 93] at
end-hosts can run convolutional and recurrent deep neural net-
works (i.e.CNNs and RNNs) to dynamically adjust congestion win-
dows [7, 99], adapt bitrates for incoming video chunks [60, 98],
predict network queue sizes [38] from the edge [35], and more.
Emerging data plane platforms, like Taurus [85], have enabled per-
packet ML inference for more complex ML algorithms, such as deep
neural networks at line rate.

Equipped with these programmable switches, NICs, and accel-
erators, datacenter networks can now react to network changes
intelligently (running sophisticated ML models) and swiftly (at line
speed). However, programming these data-planeML pipelines today
is extremely challenging, even for the most expert network opera-
tors in the industry. There is a stark difference between designing
a new feature (e.g., adding or removing a protocol header) versus
running a sophisticated model on a data plane [85, 97]. As shown
in Figure 1, the latter requires domain expertise in ML model selec-
tion 1 , architecture construction, training 2 , and hyperparameter
optimization (HPO) 3 , as well as an intimate familiarity with P4
and hardware-description languages (such as Verilog and VHDL)
and emerging high-level DSLs (e.g.Chisel [8] and Spatial [53]) 4 ,
while meeting network constraints (latency and line rate) 5 . This
process is iterated by network operators many times 6 to compile
these models on the underlying hardware backends 7 . So, to build
and execute these data-plane ML pipelines, a network operator
would have to be an expert in ML model development, hardware
architecture, and compiler design, all at the same time—a Sisyphean
task for the network operators.

In this paper, we present Homunculus, a framework that alle-
viates the burden from network operators and automatically gen-
erates efficient data-plane ML pipelines for the various use cases
(Figure 1b). With Homunculus, network operators now only have

to specify (a) the training data set (e.g., [87, 97]), (b) constraints of
the operating environment, i.e., minimum throughput and accept-
able latency, and (c) particular targets for the ML pipeline to run
on (e.g., Tofino, Taurus [85], or else). Homunculus then performs
design-space exploration (DSE) [68] to find a model suitable for the
given use case, tunes the hyperparameters, and auto-generates the
code for the specified backend. It iterates over these steps until the
final output meets the constraints (or no feasible solution exists).

Homunculus leverages several key characteristics and recent ad-
vances in the fields of machine learning (including hyperparameter
optimization [16, 67, 68, 84]) and networking (including program-
mable data planes [18, 85]). First, the recent proliferation of ML
hardware accelerators (such as GPUs, TPUs, and NPUs) makes it
possible to build large-scale systems for model search [39]; with
open-source AutoML tools [15, 49], developers can now automate
all stages of the ML development life-cycle, including model ar-
chitecture search and training. Second, multi-objective black-box
optimization frameworks (like HyperMapper [68]) decouple model
training from model search (for resource estimation and compli-
ance) [16, 28, 53, 67, 84]. Third, Homunculus exploits the unique
characteristics of datacenter networks (including operating con-
straints, such as minimum throughput and maximum acceptable
latency) to further minimize the search space of data-plane MLmod-
els by ruling out infeasible models during the search. Lastly, modern
data centers—equipped with programmable data planes [18, 85],
SmartNICs [45, 69], and FPGA-based network accelerators [32, 93]
with open interfaces (such as P4 and Spatial)—allow Homuncu-
lus to automatically generate efficient code for these individual
backend targets.

We make the following key contributions:
• Alchemy Frontend (§3.1):We introduce Alchemy, a framework

that serves as a frontend for Homunculus to express user intent
for a data-plane program in the form of objectives, data, and
constraints.

• Optimization Core (§3.2):We illustrate methodologies for map-
ping multiple applications to a data-plane device. These method-
ologies form the optimization core of Homunculus, which takes
the Alchemy input and explores the design space of ML model
topologies, trains the models via supervised learning, and tests
for constraints to find a compliant and well-performing model.

• Backend Generator (§3.3): A Homunculus backend, which
generates Spatial [53] and P4 [17] code for Taurus [85] or MAT-
based [18] switches, respectively, using the ML model generated
by the optimization core.

• Empirical Evaluation (§5): We provide extensive evaluations
and microbenchmarks of Homunculus using real-world appli-
cations. Homunculus’s generated ML pipelines achieve much
higher F1 scores compared to hand-tuned baselines for the Tau-
rus and P4-SDNet (FPGA) data planes [44, 85] backends: 83.1,
68.75, and 79.8 versus 71.1, 61.04, and 77.0 respectively.

2 BACKGROUND & MOTIVATION
ML for Networking. ML algorithms are actively replacing existing
heuristics (e.g., for load balancing, packet classification, resource
scheduling, and intrusion detection) in datacenter networks [19, 48,
59, 89, 100]. These heuristics are narrow in scope and tackle specific
aspects of networking (e.g., load balancing tailored to a leaf-spine

330

Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
A
lc
he

m
y

Fr
on

te
nd Topology

Constraints
Targets
Library

Model
Schedules

Dataset, Objective, & Target

Candidate Models Selection

Parallel Candidate Runs

Input
Models

Backend
Generation

Backend
Generation

Backend
Generation

Model Composition

Design Space Creation

Bayesian Optimization

Model
Training &

Testing

Model
Training &

Testing

Model
Training &

Testing

Final Model Selection &
Code Generation

Optimization Optimization Optimization

Feasibility
Testing

Feasibility
Testing

Feasibility
Testing

O
pt
im

iz
at
io
n

Co
re

Ba
ck
en

d
Co

de
G
en

er
at
or

Data Plane Binary

Figure 2: High-level Homunculus framework with the
Alchemy frontend (top), the optimization core (middle), and
the backend generator (bottom).

topology [2]) or require manual tuning to adapt to new operating
conditions [3, 56, 104]; therefore, when running with other heuris-
tics, they typically result in sub-optimal behavior [19]. Furthermore,
one-size-fits-all heuristics, which simultaneously handle multiple
aspects of a network, are complex or even impossible for human
operators to design [65, 83].

ML, on the other hand, can handle these complex relationships ef-
ficiently. By training on the dataset captured for a given datacenter
network, the model can customize itself to the particular environ-
ment. Over time, it can sample more data and retrain itself to reflect
changes in the network [19, 48, 59, 60, 98, 100]—understanding
relationships between activities that network operators may not
have been aware of. For example, instead of just matching incom-
ing flows against a statically known set of IP addresses, ML can
learn the correlation between fine-grain features (e.g., connection
duration, bytes transferred, protocol type, service type, packet size,
and arrival time) to make informed decisions in new and unseen
scenarios [26, 85, 87]. The rise in the number of ML-based use cases
in the last couple of years (e.g., traffic classification [97], optimal
routing [73], queue management [35, 38], and other network oper-
ations [19]) further highlights (and strengthen) the importance of
ML for networking.

Platforms for Data-Plane ML. With the advent of programmable
data planes, the networking community is actively devising meth-
ods and platforms to run ML models on such data planes [79, 80,
85, 97]. Recent efforts primarily focus on transforming a manually-
designed, pre-trained model on the underlying data-plane target
using programming abstractions, like P4. For example, IIsy [97] is a
data-plane pipeline that maps classical ML algorithms (such as SVM,
KMeans, and decision trees) onto existing MATs in PISA switches.
They exploit the structural similarity between these algorithms and
the layout of MATs, which lend themselves to efficient hardware
implementations. Similarly, Taurus [85] introduces a new compute
block (MapReduce) and an accompanying abstraction (Spatial [53])
in PISA switches—a dense array of compute and memory units,
structured in a SIMD-like pattern, capable of executing various
ML models. The SIMD patterns (map and reduce) enable efficient
implementation of linear-algebra-based ML algorithms at line rate.
However, the onus of developing a model that can meet the con-
straints and fit within the switch resources is still on the network
operators (i.e., to manually design, transform, and program these
models using low-level switch abstractions).

Automated ML Frameworks. ML methods are sensitive to many
design decisions, which poses significant barriers during model de-
velopment and training. This is particularly visible in the emerging
field of artificial neural networks (ANNs), where ML developers are
charged with selecting the suitable neural architectures, training
procedures, and regularization methods along with tuning their hy-
perparameters to achieve high prediction accuracy [10, 65]. Today,
the developers are left with tedious episodes of trial-and-error until
they identify a feasible set of choices for a particular ML application,
given its dataset.

The systems and ML communities are placing considerable ef-
forts in automating these decisions by providing useful abstractions
for the developers [43, 68]. With open-source frameworks, such as
AutoPytorch [105] and Auto-sklearn [31], a new field of automated
ML (AutoML) [43] is emerging to provide dutiful abstractions and
runtimes to automatically generate trained ML models given only
the training dataset as input.These algorithms cover a wide range of
algorithms to choose from. For example, Neural Architecture Search
(NAS) frameworks [15, 31, 105] for Convolutional Neural Networks
(CNNs) attempt various permutations of well-tested, pre-built NN
basic blocks (combinations of convolution kernels, activation func-
tions, batch normalization, and more) to explore the design space
of CNNs to find an optimal model for the task at hand. Similarly,
frameworks like AutoKeras [49] let users specify ranges of tunable
parameters (e.g., whether to perform data augmentation and/or data
normalization). The underlying systems explore this range, stochas-
tically picking a set of (tunable) parameters while keeping track
of various metrics (e.g., accuracy or F1 score) for each iteration,
ultimately selecting the best-performing model. Lastly, frameworks
such as HyperMapper [53, 68] use advanced Bayesian optimization
methods to formulate the task of model search as a black-box op-
timization problem with a limited optimization budget. The goal
is to establish algorithms that traverse the large search space with
minimal trial and error [16, 67, 78]. For example, HyperMapper
adopts a Random Forest (RF) surrogate model instead of Gaussian
Process (GP) models to reduce the computation overhead—without

331

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun

resorting to more advanced approaches [4], GPs could suffer the
overhead of building co-variance matrices and inverting them.

In this paper, by exploiting the domain-specific characteristics
of networking, we extend these algorithms and devise an AutoML
approach for generating data-plane ML pipelines to systematically
and automatically search a design space and train models while
adhering to the various performance constraints dictated by the
datacenter networks and target data-plane resources.

3 THE HOMUNCULUS DESIGN
Homunculus provides a high-level and declarative interface for
network operators to specify their application objectives (e.g., mini-
mizing false positives in an anomaly-detectionmodel ormaximizing
the throughput of a traffic-classification algorithm). Operators only
specify the datasets—either proprietary or publicly available—along
with the application objectives and a target backend (Figure 2);
together, these implicitly describe the desired application behav-
ior (e.g., anomaly detection or packet classification). Given these
datasets and objectives, Homunculus explores appropriate model
architectures (e.g., KMeans, SVMs, or DNNs), and automatically
generates an optimal binary for the target backend (e.g., Taurus [85])
while respecting the environmental constraints (i.e., network topol-
ogy, hardware resources, and service-level objectives). It hides the
low-level implementation details—that would otherwise require do-
main expertise in model selection and building, parameter tuning,
backend compilation, and constraint checking (Figure 1a)—and al-
lows operators to focus on curating network datasets and specifying
performance goals (which they have expertise in).

3.1 The Alchemy Frontend
We implement Alchemy as an embedded framework (inside Python)
that provides a declarative interface for the user to interact with
Homunculus.The user, being a domain expert, specifies the dataset
for their respective ML application (without explicitly writing the
model definitions) and an optimization objective to reduce data bias
(e.g., minimizing false negatives for intrusion detection). Alchemy,
in essence, defines this performance abstraction that works along-
side the functional description of the switch, provided by a net-
working DSL (like P4).

Figure 3 shows our anomaly-detection (AD) application written
using the Alchemy frontend. Alchemy provides several constructs
(classes and operators) to express and convey the programmer’s
intent to Homunculus, i.e., the training dataset, application objec-
tives and constraints, as well as interactions with other models or
interfaces (to external devices). The DataLoader decorator wraps
a custom function listing which datasets to use in the model search.
The function loads and preprocesses the dataset into a form that
Homunculus can parse. Next, Alchemy’s Model class specifies the
objective metric (and an optional list of algorithms) to measure the
performance of the candidate models. To enforce environmental
constraints (e.g., data-plane resources, throughput, and latency),
Alchemy supports the Platforms class that contains a list of sup-
ported backends (e.g., Tofino, Taurus, and P4-SDNet) with their
accompanying constraints. Moreover, Alchemy provides a collec-
tion of scheduling operators to specify how multiple models inter-
act with each other (either sequentially or in parallel). Finally, the
generate function informs Homunculus to start model search

1 import homunculus
2 from homunculus.alchemy import
3 DataLoader, Model, Platforms
4 import ad_loader
5
6 @DataLoader # training data loader definition
7 def wrapper_func():
8 tnx, tny = ad_loader.load_from_file(
9 "train_ad.csv")

10 tsx, tsy = ad_loader.load_from_file(
11 "test_ad.csv")
12 return {
13 "data": {"train": tnx, "test": tsx },
14 "labels": {"train": tny, "test": tsy }}
15
16 # Specify the model of choice
17 model_spec = Model({
18 "optimization_metric": ["f1"],
19 "algorithm": ["dnn"],
20 "name": "anomaly_detection",
21 "data_loader": wrapper_func })
22
23 # Load platform
24 platform = Platforms.Taurus()
25 platform.constrain(
26 "performance": {
27 "throughput": 1, # Giga-Packets/second
28 "latency": 500 }, # ns
29 "resources": { "rows": 16, "cols": 16 })
30
31 # Schedule model and generate code
32 platform.schedule(model_spec)
33 homunculus.generate(platform)

Figure 3: Alchemy syntax for the anomaly-detection use case.
The pipeline is defined for the Taurus switch, scheduling a
single model on the data plane (no model composition).

and code generation. Table 1 lists the various constructs available
in Alchemy.

3.2 The Optimization Core
Homunculus’s optimization core performs a design space search
for model selection that maximizes the application objective while
respecting the data-plane resources and network constraints. The
core chooses among various ML algorithms and implements the
model generation and data-plane mapping steps as a Bayesian-
optimization problem [25, 33, 72] when selecting the best perform-
ing configuration.
3.2.1 CandidateModels Selection&Composition. Homuncu-
lus aims to satisfy application objectives by exploring a variety of
ML models (from the pool of supported algorithms). The core initi-
ates multiple parallel runs to find the most efficient and performant
model for the given application. We take inspiration from other (it-
erative) compiler systems (such as Xilinx Vivado [96]) that execute
multiple parallel strategies to find the optimal resource placement
and timing closure [94, 96], often called recipes. Some algorithms
may consume fewer resources while others may perform better
with bigger datasets. As a first step, the core tries to rule out as
many algorithms as possible based on the data-plane platform and
network constraints. For example, the number of multiplication
and addition operations required for a modest DNN model can
quickly exceed the computational capacity of a MAT-based switch;
however, the mapping would indeed be feasible if ample MATs are
available [80].

Next, when mapping multiple models to a given target, the op-
timization core ensures that (individual) model constraints are

332

Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Alchemy’s constructs: classes and operators.

Construct Symbol Description

Model Model(optimization_metric, algorithm, data_loader, …) Specify model objectives and datasets

@DataLoader @DataLoader() Load and preprocess model dataset

Platforms Platforms.[Taurus, Tofino, FPGA] Declare a backend target

>, | Platforms.schedule(mdl1 > mdl2) or .schedule(mdl1 | mdl2) Sequential > and parallel | composition

IOMap IOMap(mapper_func) Connects models’ inputs and outputs

@IOMapper @IOMapper([io_ins], [io_outs]) Specifies input to output mapping

< Platforms < (performance, resources) Apply network and data-plane constraints

consistent with each other. For example, if one model operates
at 1 Giga-Packet/second throughput and feeds into another model
operating at 0.5 Giga-Packet/second, the first model must also op-
erate at 0.5 Giga-Packet/second. The core further disqualifies any
such models that fail to meet these constraints.

3.2.2 (Automated) Design Space Creation. After creating a
list of candidate algorithms, Homunculus’s core uses the accompa-
nying models’ parameters and constraints to build a design space.
Homunculus defines the search space by setting upper and lower
bounds for these tunable parameters (e.g., the minimum and maxi-
mum number of neurons in a DNN layer or the range of learning
rate values attempted) to determine models’ performance. These
bounds are applied to three sets of variables:

Hyperparameters. These are parameters of an ML model that
are not decided by the training process. For a DNN, these include
parameters for the neural architecture search, such as the number
of layers and neurons as well as training parameters (e.g., learning
rate and batch size). Traditionally, these parameters are hand-tuned.
They have a significant impact on the performance of the resulting
model; however, the massive design space they cover makes hand-
tuning extremely challenging. Homunculus instead explores the
hyperparameter design space using Bayesian optimization (BO), by
assigning upper and lower bounds to these parameters—typically
calculated based on the target being considered.

Physical Resources. The availability of resources on a data-plane
platform has a large impact on the types of algorithms that the
platform can support. For example, MATs in Tofino and the extent
of loop unrolling in Taurus place restrictions on the supported
models. In Homunculus, we encode data-plane resources (such as
CUs, MUs, and MATs) as feasibility constraints; if a certain algo-
rithm configuration (e.g., number of layers or neuron count of DNN)
exceeds the provided resources, that configuration is marked infea-
sible and removed from the candidate set. Subsequent iterations of
the Bayesian optimization will recommend model configurations
that use fewer resources.

Network Constraints. Network topology imposes further perfor-
mance constraints. For example, a model running on a switch in
the core of the network must operate at multi-terabits per second,
whereas on an end-host NIC, it can run at 40Gbps–100Gbps. As
with resources, Homunculus encodes these constraints as feasibil-
ity requirements, providing further opportunities for the optimiza-
tion process to drop infeasible model configurations.

3.2.3 Bayesian-Optimization (BO) Guided DSE. With three
classes of variables discussed earlier, Homunculus puts a finite
bound on a previously infinite design space. Each additional vari-
able expands the design space and adds complexity to the optimiza-
tion process. The difficulty of managing a space of this magnitude
quickly outpaces human capabilities. And, at a certain point, it can
even hamper automated search processes as well. Fortunately in
Homunculus, rather than expanding the search, the additional
variables for physical resources and network constraints help re-
duce the design space by disqualifying infeasible configurations,
quickly. Even still, the search space is too large to manage using ba-
sic heuristics and demands efficient optimization processes to guide
DSE. We formulate the DSE as a black-box optimization problem
(as discussed in Appendix A).

3.2.4 BO-SuggestedModel Training, Testing, & Fusion. With
the BO-suggested hyperparameter configurations, the optimization
core can now use these parameters to build an ML model and train
it with the user-specified dataset. The model is trained with a loss
function corresponding to the metric designated by the application
objectives, such as accuracy or an F1 score. These metrics will be re-
turned to the DSE stage (§3.2.3) to inform the next set of suggested
hyperparameter configurations.

To further save resources, some models can be combined into a
single model. Models operating on similar datasets are most likely
learning similar characteristics [88, 90]. Sincemost data coming into
a data-planemodel comes in the form of packets, datasets will have a
number of features in common (e.g., packet headers). Homunculus
will assess the feature sets for similarities and if there are certain
features in common, it will attempt to build a single model to serve
both datasets by sharing learned characteristics between tasks,
while also reducing resource usage by eliminating redundancies
between learned weights. At this point, the only elements left to
evaluate are the feasibility constraints. To test this, Homunculus
generates the hardware code (using ML model templates for each
platform) to map the model to the underlying backend.

3.3 The Backend Code Generator
Each target platform that Homunculus supports (e.g., Taurus,
Tofino, or P4-SDNet FPGA) has an associated backend compiler
to allow for performance and feasibility testing. Each backend is
responsible for generating the platform’s hardware code that can
be tested in either simulation or on a physical testbed. We utilize
cycle-accurate simulators (such as the SARA framework [103] for
Taurus) that allow us to precisely measure resource utilization and

333

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun

●

●

●
● ● ● ● ● ●

●

●

● ● ● ●

●

● ●

●

●

20

40

60

80

5 10 15 20

Iterations

F
1

 S
c
o

re

Figure 4: Regret plot with F1 score metric for anomaly-
detection DNN on the Taurus’ Map-Reduce grid.

latency/throughput of the ML model under test. Code is gener-
ated by assembling existing templates for common ML components
before optimizing and testing.

After a predetermined number of optimization iterations, the
best performing, constraint-compliant model is selected, and its
data-plane platform code and binary are generated. The amount of
iterations an application takes to reach a desirable configuration
is highly dependent on situational factors, such as the resources
and data available. To give programmers an intuition of how this
may affect their application, we show a plot in Figure 4 for the
AD application with the achieved F1 score in each optimization
iteration. We see that while initial results are poor, Homunculus
quickly begins to find a stable F1 score. For the in-network ML
applications evaluated in §5, we observe that Homunculus reliably
achieves satisfactory results after 20 iterations (as in Figure 4);
newer (more complicated) applications may require more iterations.
Once it finds a variant that performs significantly better, it trades off
between its earlier stable configuration and the discovery of more
high-performing variations, effectively balancing the exploitation
of known parameter combinations and exploration of unknown
ones.
Template-based Code Generation for ML Models. To efficiently
generate code for a backend, we use parameterized templates for
commonly used operations (e.g., feature extraction, activation func-
tions, dot product, and more). The parameters are calculated as a
function of the optimization core’s suggested configurations. These
template blocks can then be assembled into larger blocks or even
full packet pipelines. As an example, consider a Taurus switch,
whose MapReduce block is programmed using the Spatial DSL [53].
Homunculus starts with simple parameterized constructions, such
as dot products, and builds up to larger structures, like matrix mul-
tiplication and eventually DNNs. It expresses simple dot products
as a map operation to perform element-wise multiplication with an
addition-based reduction to combine the results into a scalar. These
dot products then nest inside an additional map operation to build
a full DNN layer [74, 85]. Homunculus controls the exact number
of neurons and layers with parameters dictated during the opti-
mization core phase (§3.2), and places the trained weights on the
on-chip memory. It then stitches these layers together by storing
intermediate results for each layer in double-buffered SRAM blocks
that feed into subsequent layers. Owing to the regular structure of
ML algorithms (e.g., KMeans and SVM) the code-generation process
for other platforms (like Tofino using P4 templates) follow a similar
methodology.
Feasibility Constraint Testing for Generated Models. Once the
hardware code has been generated for an ML model, it can be

mapped into the testing infrastructure. The testing setup is required
to provide verdicts on the feasibility constraints that the optimiza-
tion core phase is querying. In particular, the testing infrastructure
is responsible for computing throughput and latency as well as
identifying whether the application can be mapped within the
available resources. This is done using hardware testbed platforms
or cycle-accurate simulators (e.g., Tungsten [103] for Taurus or
Xilinx Vivado for P4-SDNet FPGAs) depending on the particular
backend.

4 IMPLEMENTATION
Alchemy Frontend. We implement theAlchemy frontend in Python.
The embedded nature allows programmers to import Homunculus
functions along with Alchemy constructs and use them in conjunc-
tion with existing Python primitives and libraries. In addition, the
ubiquity of Python in machine learning, data science, and dataflow
frameworks means that functions in these domains (such as Pan-
das [62], TensorFlow [1], or Theano [13]) can be incorporated into
Alchemy’s decorator functions (IOMapper or DataLoader or even
its compositional operators.

Optimization Core. Homunculus’s optimization core employs
Bayesian optimization (BO) to maximize user objectives while meet-
ing feasibility constraints. To perform our optimization, we use
HyperMapper [68], a framework for constrained multi-objective
optimization, along with standard machine-learning frameworks
(like Keras [23] and Tensorflow [1]). Compared to other frameworks
for BO (e.g., OpenTuner [6], HyperOpt [14], or GPflow Opt [52]),
HyperMapper provides a more comprehensive feature set, such
as multi-objective optimization, varying parameter types (real, or-
dinal, integer, and categorical variables), and feasibility testing,
to allow Homunculus to automatically search and generate effi-
cient ML models. For example, multiple optimization objectives
let users specify multiple goals for their ML model (e.g., high F1
score and low false negatives). Likewise, the wide set of parameter
types allows BO to explore a range of ML hyperparamaters, such as
learning rate (real), parallelization level (ordinal), number of layers
(integers), or types of activation functions (categorical). Finally,
feasibility testing during the BO process reduces the search space
by ruling out ML configurations that fail to meet the resource and
performance constraints.

Homunculus parses the design-space restrictions from the ap-
plication’s program (written in Alchemy) and exports it as a JSON
configuration file (describing searchable parameters). HyperMap-
per read this JSON file to start the optimization process. As the
optimization is running, Homunculus receives regular parame-
ter suggestions from HyperMapper, and evaluates them for both
the user’s objective and adherence to feasibility constraints in tar-
get backends. The outcomes of these evaluations are then sent to
HyperMapper to guide further design-space exploration.

The Backend Code Generator. For backend targets (like the Tau-
rus [85] and P4-SDNet FPGA), we use an intermediate hardware-
description language called Spatial [53]. Spatial relies on loop-level
constructs to describe applications and translate them into a bit-
stream that can be applied to the underlying data-plane fabric (e.g.,
Taurus or a FPGA). The loop-level constructs make functional oper-
ators (like map and reduce) available, which allows our templates

334

Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 2: Comparison of hand-tuned baseline models vs. Ho-
munculus generated models for Taurus ASIC (CU/MU: com-
pute/memory units).

Application Features # NN Param F1 Score CUs MUs

Base-AD 7 203 71.10 24 48
Hom-AD 7 254 83.10 41 67

Base-TC 7 275 61.04 31 59
Hom-TC 7 370 68.75 54 97

Base-BD 30 662 77.0 167 45
Hom-BD 30 501 79.8 53 151

to be highly parallel and achieve high performance. In conjunction
with Spatial, we use compiler frameworks (such as SARA [103]) to
enable efficient mapping to tile-based reconfigurable architectures
(e.g., Taurus).

We also support common architectures such as the MAT-based
pipelines found in switching architectures (e.g., Tofino [47] or the
P4-SDNet FPGA [44]). In these architectures, the number of avail-
able MATs becomes the constraining resource. We use IIsy [97] as
a backend for mapping ML algorithms (such as SVMs or KMeans)
to MATs. IIsy makes the relation between algorithm parameters
and MATs explicit, a relation that can be exploited as a constraint
by Homunculus. Homunculus will tune parameters in the algo-
rithm that translate to MATs and attempts to fit generated models
into the limited pipeline resources. For example, IIsy shows that
an implementation of an SVM may use a MAT per feature. If the
number of MATs is insufficient, Homunculus will try to remove
less impactful features until the SVM model fits.

5 EVALUATION
To investigate the effectiveness of Homunculus, we test the com-
piler stack with real-world applications, addressing problems in net-
work security and traffic classification. The models generated from
Homunculus are constrained to 1 Giga-Packet/second line-rate
throughput for all applications. We evaluate several microbench-
marks to demonstrate the capabilities of the Homunculus frame-
work in terms of resource budgeting and support for alternative
data-plane architectures. For all these experiments, we setup Hyper-
Mapper to use the Random Forest [20] surrogate model, which is
known to work well with systems workloads that require modeling
of discrete parameters and non-continuous functions [68].We select
the Expected Improvement criterion [64] and a uniform random-
sampling initialization phase followed by Bayesian optimization
iterations.

BaselineApplications. Weevaluate the performance of Homuncu-
lus’ generated models using a set of real-world applications (Ta-
ble 2). Our first baseline is a hand-crafted anomaly-detection (AD)
model from [85] and [86], rewritten in Spatial [53] and trained of-
fline on labeled packet-level traces from the NSL-KDD [26] dataset.
We also evaluate Homunculus on a traffic classification (TC) appli-
cation, shown in IIsy [97], and a botnet-detection (BD) application,
found in Flowlens [11]. The TC application is built from IoT device
traces in a data center and requires that an application correctly
identifies the device type from packet-header features (packet size,
Ethernet, and IPv4 headers). The original TC models from IIsy [97]
are statistical models (SVM, K-Means, and Decision Trees), but we

● ● ●
● ●

●
● ●

● ● ●

●
●

●

●

●

●

●

●

●
● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20 22

A
v
g

.
P

L
 C

o
u

n
t

● ●Benign Malicious

●
●

●

● ● ●

●

●

●
● ● ●

0.4

0.8

1.2

1.6

2.0

2.4

1 2 3 4 5 6

Bins

A
v
g

.
IP

T
 C

o
u

n
t

Figure 5: Botnet vs. benign flow-level packet length (PL) and
inter-arrival time (IPT) histograms averaged across all flows
on Taurus ASIC.

create a hand-written DNN baseline with three hidden layers (10,
10, and 5 neurons) to test against Homunculus’s DNN generation
capability for a fair comparison. The BD application is built from a
dataset consisting of P2Pworkloads that include traces from botnets
(e.g., Storm and Waledac) and benign traces from uTorrent, Vuze,
eMule, and Frostwire [77]. The botnet traffic can be segregated from
benign P2P traffic by analyzing the histograms of packet sizes and
inter-arrival times at the flow level.

5.1 Microbenchmarks
5.1.1 Homunculus Reaction Time. The botnet detection (BD)
problem has been studied, primarily, at the conversation level (track-
ing source and destination IP, while ignoring ports) [11, 66, 77]. The
idea is to aggregate packet sizes and packet inter-arrival times into
coarse-grained histograms (called flow markers) for up to 3,600 sec-
onds (even on programmable switches like Tofino [11] using regis-
ters) beforemaking a prediction of benign ormalicious (botnet) flow.
This is possible because botnets communicate via low-volume and
high-duration flows compared to benign P2P applications, which
makes them identifiable using their packet size and inter-arrival
time histograms over the duration of their flows [11, 66, 77].

We demonstrate that by making predictions on per-packet-level
partial histograms, we can greatly reduce the reaction time of a
BD model compared to using full flow-aggregated flow markers.
Figure 5 shows histograms of packet sizes (bin size: 64 bytes) and
inter-arrival times (bin size: 512 seconds) for benign and malicious
classes averaged over the entire traffic set when running on the
Taurus backend. We observe that due to characteristic differences
in the network traffic of benign and botnet P2P traffic, the resulting
histograms of both kinds of applications start to look different—as
certain bins are not expected to fill for botnet applications—early on,
even with few packets seen. This insight and empirical results serve
as evidence for the need for per-packet ML and AutoML pipeline
generators (such as Homunculus).
5.1.2 Homunculus vs Baselines Resource Usage. As shown
in Table 2, for AD, TC, and BD applications, Homunculus is able

335

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun

to build models that outperform the hand-tuned baselines. This is
because Homunculus is aware of the platform and environment
where the application is being run and can make better use of
available resources. Using more resources means choosing a bigger
model (for example, more layers and neurons for a DNN), which can
result in an improvement in the model’s test performance. This is
evident from the Compute Unit (CU) and Memory Unit (MU) usage
numbers (in Table 2) on a Taurus platform. We argue that this is a
point in favor of the compiler. If resources are unused, the platform
will simply be under-utilized. However, it is challenging for users
to cater models to the available resources without knowledge of the
platform and environment. Bridging this gap results in potentially
higher improvements in performance. In the case of AD, we see a
full 12-point increase—this could be the difference between allowing
malicious traffic to compromise a system and a stalwart defense.

For both the BD models, training was done on full flow-level
histograms, while the F1 scores are reported on the per-packet-level
partial histograms (using 120 Million test packets). The original
FlowLens [11] model for BD used a flow-marker size of 151 bins
(94 bins for packet size, the rest for inter-arrival time), while for
our baseline and generated application, we use only 30 bins (23
for packet length and 7 for inter-arrival time) by fusing smaller
bins into larger ones. With the BD application, contrary to AD
and TC, the baseline is the bigger model (4 hidden layers of 10
neurons each) in terms of parameter count and resource usage,
as shown in Table 2. Yet, Homunculus manages to outperform
the baseline model with a smaller model (10 hidden layers with a
smaller neuron count per layer) by distributing neurons across more
layers. The baseline BD model is more compute-intensive (using
167 CUs) due to increasing hidden-layer compute demands, while
the generated model uses more memory units (151 MUs) because it
needs to store the neurons and weights of a larger number of layers.
The FlowLens [11] BD model can perform with a high F1 score on
large flow-level histograms accumulated over 3,600 seconds; despite
our reduction in feature size and performing on per-packet-level
histograms, we still manage to get an F1 score of 77.0, which is
much more reactive than waiting for an entire hour before labeling
a malicious flow. Moreover, Homunculus manages to overcome the
shortcomings of a hand-tuned design and offers a better-performing
model with an F1 score of 79.8. Thus, not only are we able to reduce
flow-marker size by 5× (hence increasing the number of flows we
can handle on a switch proportionally), but we also reduce the
reaction time from 3,600 seconds to a few hundred nanoseconds,
while improving the F1 score.

5.1.3 Multi-Application Scaling & Model Fusion. We also
demonstrate Homunculus’s ability to support multiple applica-
tions on a single target. The Alchemy frontend allows a user to
specify how different models interact with each other via sequential
and parallel operators (Table 3). Here, we show several examples of
application chaining and how it affects resource usage. We chain
copies of the anomaly-detection (AD) DNN in various configura-
tions to show the execution of multiple user models on a single
Taurus switch. In Table 3, we see that the increase in resources
for different chaining strategies stays constant with the number of
models, regardless of the strategy itself. This is because additional
logic for managing models is negligible and can be fit into existing

Table 3: Resource scaling for different application chaining
strategies using a Taurus ASIC.

Model CUs MUs

DNN > DNN > DNN > DNN 24 24
DNN | DNN | DNN | DNN 24 24
DNN > (DNN | DNN) > DNN 24 24

Table 4: Fused resource usage in Taurus ASIC (CU/MU: com-
pute/memory units).

Application CUs MUs

AD: Part 1 44 81
AD: Part 2 51 96
AD: Fused 48 83

Table 5: Timing breakdown of Homunculus’s various phases
for our AD DNN. The backend is specific to a particular tar-
get/vendor (e.g., Xilinx).

Homunculus Phases Latency (s)

Alchemy IR Generation 0.0015

Opt. Core
DSE Creation 0.1535
BO Initialization (10) 62.2593
BO Iterations (10) 61.0445

Backend Target Specific –

CUs, already in use; hence, allowing for much more efficient scaling
of applications and sharing of backend resources (like Taurus).

For model fusion, in Table 4, we perform an experiment that
divides the dataset of our AD application into two separate models.
The two separate models map onto the same switch, with each
allocated half of the switch’s resources. Since the datasets of the
two models will share features, we can let Homunculus fuse them
into a single model. Table 4 shows the resource counts for the two
split models (AD: Part 1 and AD: Part 2) evaluated individually,
and the resource count for a fused model that uses both datasets to
create a single model. The resource count is about the same for the
fused model since the two split models each learn the same network
characteristics. Instead of duplicating this knowledge, Homunculus
encodes it into a single model, effectively cutting the resource usage
by a factor of two.

5.1.4 Homunculus Compilation Times. Table 5 shows the
time taken by each of the different phases in Homunculus when
compiling our AD DNN model.1 We measure the end-to-end time
Homunculus takes to compile the DNN—from Alchemy’s IR gen-
eration to DSE creation in the optimization core (along with BO
initialization and iterations).The time to generate an input (e.g., Spa-
tial or P4) for a backend is included in the results; however, the time
to generate the final bitstream or binary is target-/vendor-specific,
e.g., Xilinx [96] or Taurus [85] (not shown).

The IR generation as well as DSE creation, each takes less than a
second, while the various other Bayesian optimization (BO) steps
take about a minute per 10 iterations. The majority of the time will
1We ran these experiments using a commodity server machine (with an Intel i7-4790
CPU@ 3.6 GHz and 16GB of main memory); these machines are readily available from
vendors (like Dell) and are deployed in data centers and public clouds (e.g., Microsoft
Azure, Google Cloud, and AWS).

336

Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 6: Resource consumption and utilization of applica-
tions running on the Taurus FPGA testbed [85].

Application Model LUT% FFs% BRAM% Power (W)

Loopback - 5.36 3.64 4.15 15.131
Base-AD DNN 6.55 4.30 4.15 16.969
Hom-AD DNN 6.61 4.43 4.15 17.440
Base-TC DNN 6.69 4.48 4.15 17.553
Hom-TC DNN 7.48 4.77 4.15 18.405
Base-BD DNN 7.29 4.68 4.15 17.807
Hom-BD DNN 6.72 4.49 4.15 17.309

be incurred at the backend verification and bitstream generation
steps, which can take minutes to hours depending upon the partic-
ular target. However, we note that the overhead of Homunculus’s
additional phases (§3) is minimal compared to the target-specific bit-
stream generation. Furthermore, a model is developed once, ahead
of time, and only the final model runs on the backend.

5.2 End-to-End Hardware Evaluation
Testbed Setup. We use the Taurus testbed [85] for our end-to-
end evaluation. A 32-port programmable Tofino Wedge100BF-32x
switch running Stratum OS [71] is used to implement the PISA
pipeline of the Taurus [85] switch. Its MAT processing pipelines are
configured for pre- and post-processing, as necessary, to manage
the TaurusML core, which is emulated as a bump-in-the-wire FPGA.
The switch bypasses its internal traffic through a Xilinx Alveo U250
FPGA [93] over a 100Gbps connection, which is used to emulate the
MapReduce ML logic of a Taurus switch. A CMAC core [95] with
an AXI interface is used to forward the packets to the FPGA. The
control plane runs the ONOS controller [70] and a Python REST API
is used to install forwarding rules on our switch. Two 80-core Intel
Xeon servers generate and receive traffic via MoonGen [29]. Both,
the baseline and the Homunculus-generated models are compiled
to Verilog using the Spatial compiler and downloaded to the FPGA
for evaluation. (All models operate at line rate.)
5.2.1 Data-Plane ML Pipelines on the Taurus Testbed.
Resource Usage. Table 6 summarizes the FPGA power and resource
consumption of the seven models we test using the Taurus testbed.
Power consumption and resource utilization of loopback is due to
the bump-in-the-wire FPGA, which would be non-existent on an
actual Taurus ASIC. We can observe from Table 6 that for the AD
and TC applications, Homunculus generates larger models with
higher layer/neuron count, which consume a higher number of
FPGA resources (Flip Flops, BRAM, LUTs) and, consequently, also
consume higher power. The Homunculus model for the BD appli-
cation consumes slightly fewer FPGA resources compared to the
baseline model because the number of parameters in the baseline
model is higher—resulting in a larger difference in LUT consump-
tion compared to other resources (LUTs store the parameters of a
model in the FPGA).
Performance. Table 7 shows the ideal and achieved accuracy, as
well as speeds, of our three applications (anomaly detection, traffic
classification, botnet chatter detection) when running on the Taurus
testbed [85]. We see that Homunculus is able to generate FPGA
hardware description code for a variety of applications, and the gen-
erated code is able to achieve the ideal F1 score—calculated offline
in software (Table 2)—while maintaining line-rate performance.

Table 7: F1-Scores of generated applications running on the
Taurus FPGA testbed [85].

Application Ideal F1 Achieved F1 Line-Rate

Anomaly Detection 83.10 83.10 Yes
Traffic Classification 68.75 68.75 Yes
Botnet Chatter Detection 79.8 79.8 Yes

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

● ● ● ●

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10

Iterations

V
 S

c
o

re

● ● ● ● ●KMeans1 KMeans2 KMeans3 KMeans4 KMeans5

Figure 6: Regret plotwithV-Measure scoremetric for KMeans
on match-action tables (MATs).

5.2.2 Data-Plane ML Pipelines on MAT-based switches. Ho-
munculus can support existing architectures, like MAT-centered
pipelines (e.g., Tofino). We show the results for an existing ML-
for-switches platform, IIsy [97], plugged into Homunculus as a
backend. Homunculus generates input for IIsy, which then com-
piles onto underlying P4 switches. 2

Resource Usage. Homunculus conforms the TC algorithm to the
constraints dictated by IIsy and the switch hardware (MATs in this
case). IIsy restricts a single MAT for each cluster, where a cluster
corresponds to one of the five traffic classes. This means that these
KMeans models will consume in the range of one to five MATs. For
switches with fewer tables, Homunculus creates more coarse-grain
clusters, sacrificing fidelity in favor of resource usage.

In Figure 6, we show the V-measure score for a Homunculus-
generated KMeans with varying resource availability. The objective
is to cluster traffic frommultiple IoT devices into a number of groups
using packet header features. In the IIsy framework, a KMeans
implementation can be mapped onto MATs. However, each cluster
grouping takes up an additional MAT. In Figure 6, we see five
generated implementations of KMeans traffic classification using
the IIsy backend, each with different resource constraints. KMeans5
(K5) represents the application with 5 available tables, K4 has 4, and
so on. Homunculus automatically generates models to fit each of
the different resource constraints by dropping clusters and opting
for coarser groupings at the cost of accuracy (as measured by the
V-score).

Performance. An advantage of the Tofino architecture [46, 47] is
that it implements a reconfigurable match-action table pipeline [18]
to run at line-rate (1 Giga-Packet per second). Unless a packet is
directed to recirculate through the packet pipeline, all operations
mapped to the pipeline will run at the switch’s line rate. Since IIsy
is designed to map algorithms into a P4 program and, by extension,
2Other approaches to mapping ML models to MATs (e.g., as BNNs in N3IC [81]) can
also be added as new backends to Homunculus.

337

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun

P4 platforms (like the Tofino architecture); a successful generation
of the parameters for our KMeans test case, therefore, runs on the
Tofino architecture at full speed.

6 LIMITATIONS & FUTUREWORK
Homunculus allows network operators to express and deploy data-
plane models without requiring extensive expertise in MLmodel de-
velopment. However, additional research is needed to (1) co-compile
data-plane ML models with traditional network applications, (2)
produce high-quality datasets for more performant and accurate
models, and (3) allow faster model retraining and deployment.

Co-CompilingMLModelswithNetworkApplications. At present,
Homunculus generates ML models in isolation without taking into
account other networking applications (e.g., routing and switch-
ing). Ideally, a compiler should consider both the models and other
networking tasks, which need to run on the same data plane, and
devise an optimal division and distribution of resources among
them. Doing so can allow a compiler to find opportunities for re-
source sharing not just among models (as in Homunculus) but also
across other non-ML data-plane applications.

Collecting Higher-Quality Network Datasets. The performance
and accuracy of the data-plane ML models not only rely on how effi-
cient a compiler is in mapping a particular model to the underlying
target but also on the quality of the dataset it is trained on. There-
fore, concerted efforts across industry and academia are needed to
collect high-quality datasets, e.g., for capturing fine-grained events
(i.e., packet-level traces rather than just flow-level traces). Moreover,
the collected datasets must be cleaned and should clearly depict
the trends the operators intended their models to learn. Lastly, we
need mechanisms to systematically collect and open-source these
datasets to the broader community (in a privacy-preserving way)
to use and extend upon [41].

Enabling Faster Model Retraining and Deployment. For hard-
ware feasibility testing andmapping, Homunculus relies on backend-
specific tools (e.g., Xilinx [96] and SARA [103]). Thus, to expedite
model retraining and deployment, the processing time of these
tools needs to be improved. For retraining, rather than running
the entire synthesis and place-and-route stages, we can explore
ways to accelerate/omit certain stages (e.g., by reducing or paral-
lelizing optimization effort [36, 92]) to return resource estimates
quickly—using the full set of optimizations for deployment only.

Enforcing Safety Nets for In-Network ML Systems. In-network
ML primarily assists with the non-deterministic aspect of network-
ing: performance (e.g., load balancing and traffic engineering [97])
and security (e.g., anomaly detection and firewalls [86]). For deter-
ministic operations, such as ensuring packets destined to a particu-
lar server always reach that server (e.g., routing and switching [17]),
rule-based MATs are sufficient. These MATs can also be used to
enforce deterministic bounds on the output of probabilistic ML
models and restrict their decisions [85] to implement safety nets.

7 RELATEDWORK
Automated Machine Learning. With so many hyperparameters
to tune and ever-increasing model sizes, developers have started
relying on Automated ML (AutoML) to explore the space of possible

neural architectures and hyperparameters. AutoML tasks typically
do not share the unique and stringent set of constraints that arise
in datacenter networking, which ultimately allows Homunculus
to handle, otherwise untenable search spaces. Computer networks
have several requirements that must be considered jointly with the
neural architecture search. Multi-objective optimization is crucial
because real-world applications often rely on a trade-off between
several objectives [52, 68]. Derivatives are also often unavailable
because of discrete input variables and noisy black-box functions,
or are impractical to compute [34]. All of these features are standard
requirements in datacenter networking but are rarely exposed in
AutoML frameworks, which usually focus on the accuracy of theML
model alone. In general, there have been only a few attempts to date
at AutoML-driven systems in the networking space (such as using
an AutoML approach for traffic analysis [41]). Our work focuses on
refining network representations and fits well with systems, such
as Homunculus, that can consume and utilize this data.

Code Generation for Data Planes. Recent works have explored
code generation for data and control planes. Mantis [101] generates
data plane and switch-local control plane software optimized for
reactivity, allowing a faster control plane to react to congestion
conditions in 10s of `-seconds. Lucid [82] generates efficient P4
code for the data plane via a high-level language and can also
specify control-plane functionality. These control-plane functions
are mapped to the data plane, allowing faster control decisions
compared to the switch-local control plane. While these efforts are
primarily meant for data-plane and control-plane code generation
to enable either reactivity or data-plane control, our approach is
meant for generating efficientML pipelines for data-plane platforms,
which fit within the available resources and constraints.

Configurable Hardware. Plasticine [74], a Coarse-Grained Recon-
figurable Array (CGRA), provides a grid of compute and memory
units, which can be reconfigured according to the dataflow graph
of an application. This SIMD grid of compute and memory units
provides the necessary flexibility to implement neural networks in
the data plane that are not realizable in the VLIW MAT pipeline.
Taurus’ MapReduce block is based on this architecture, which has
been tailored to support streaming data on switches and NICs [85].
The Reconfigurable Match Table (RMT) is an example of a reconfig-
urable architecture that has been specifically designed while con-
sidering the domain characteristics of the network data plane [18].
While the two platforms are structurally different (SIMD vs VLIW),
Homunculus is agnostic to these architectural variations and only
needs to query the resource utilization and performance metrics to
generate platform-specific code for either of them.

8 CONCLUSION
We presented Homunculus, a compiler for building efficient data-
plane ML pipelines from high-level directives—giving network op-
erators an easy way to inform the compiler of their needs rather
than having to spend time tuning hyperparameters and trying to
manage the various demands of the network data-planes and topol-
ogy. It is clear that human operators are no longer the best choice
for deploying algorithms in a datacenter network. The environment
is far too complex for humans to manage. Instead, they should de-
scribe their intent and let automated systems handle the rest. With

338

Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Homunculus, we move one step closer to this era of declarative,
intent-based networking.

ACKNOWLEDGMENTS
We thank our anonymous shepherd and reviewers for their valu-
able feedback that helped improve the quality of this paper. We
also thank Yaqi Zhang and Alexander Rucker for their assistance
with the various backend components used in Homunculus (like
PIR and Tungsten), as well as Nathan Zhang for his insights on
fast FPGA recompilation. This research was supported by National
Science Foundation (NSF) awards (CCF-1937301 and CNS-2211381).
Support also came in part from affiliate members and other sup-
porters of the Stanford DAWN project—Ant Financial, Facebook,
Google, Intel, Microsoft, NEC, SAP, Teradata, and VMware. Luigi
Nardi was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP), funded by the Knut and
Alice Wallenberg Foundation.

A BO-GUIDED DSE FORMULATION
Here we provide a formal definition of the optimization process,
mentioned in §3.2.3, and make it tractable by treating models and
algorithms as opaque functions (i.e., black boxes). In black-box
optimization, the process is unaware of the internals of the models
and, therefore, can swap differentML algorithms and configurations
without changing the optimization method.

The black-box problem optimizes a (possibly noisy) function
5 : X → R over a domain of interest X that includes lower and
upper bounds on the problem variables. The variables defining
X can be real (continuous), integer, ordinal, or categorical, as in
HyperMapper [68]. The objective function 5 for Homunculus is to
maximize model performance (say F1 score) under the constraints
(28) of network performance (latency, throughput) and resource
consumption (such as LUTs, BRAM, CU, MU, and MATs). G∗ is the
optimal ML model configuration (say, the number of layers and
neurons per layer for a DNN) that maximizes this objective while
respecting the constraints.

Homunculus assumes that the function 5 is in general expensive
to evaluate, e.g., it may take minutes or hours to evaluate one design
x ∈ X (even using a software model such as SARA [103] for Taurus),
and that the derivatives of 5 are in general not available. The sec-
ond assumption implies that off-the-shelf gradient-based optimizers
cannot be used to solve the optimization problem; the function is
called black box because we cannot access other information than
the output ~ of the function 5 (F1 score, resource utilization, laten-
cy/throughput) given an input value x (ML model configuration).
Bayesian optimization (BO) achieves this by building a probabilistic
surrogate model on 5 based on the set of evaluated points. At each
iteration, a new point is selected and evaluated using the surro-
gate model, and this model is updated to include the new point
(GC+1, ~C+1).

B ARTIFACT APPENDIX
Abstract. The artifact contains the source code for the titular Ho-
munculus compiler, a backend for the Taurus ASIC switch ar-
chitecture, as well as three representative applications. We used
these applications to demonstrate the core results of our paper,
i.e., how Homunculus-generated models outperform or match the

hand-tuned baseline versions. We include applications for anomaly
detection, traffic classification, and botnet detection, as shown in
Table 2. Homunculus also generates the appropriate hardware
code for each of these applications to run on a Taurus switch archi-
tecture. The code repositories accompany detailed instructions on
how to build and run the applications using Homunculus.

Scope. This artifact provides three main contributions: the Ho-
munculus compiler, a Taurus backend, and three representative
applications to test the compiler with. The objective is to provide
users with examples of how to program in-network ML models
using the Alchemy frontend (and compiled with Homunculus),
and compare their performance with hand-tuned baseline coun-
terparts. The compiler generates these models as Spatial hardware
description language (HDL) for the Taurus ASIC backend.

Contents. The source code and documentation for building and run-
ning Homunculus with the Taurus ASIC backend with the accom-
panying applications are published as a collection of GitLab repos-
itories here: https://gitlab.com/dataplane-ai/homunculus/artifact-
asplos23. We also provide a Docker image on figshare with a pre-
built version of Homunculus that users can run without worrying
about setup (https://doi.org/10.6084/m9.figshare.22081901.v1). The
primary components are as follows:
• Homunculus Compiler: This repository contains the source code

and instructions for building theHomunculus Compiler. It can be
found at https://gitlab.com/dataplane-ai/homunculus/compiler

• Taurus ASIC Backend: This repository contains the source code
and instructions for building the Taurus ASIC Backend to accom-
panyHomunculus. It can be found at https://gitlab.com/dataplane-
ai/homunculus/backends/taurus-asic

• Applications andDatasets: In this repository, we share theAlchemy
source code and dataset for the three applications provided with
Homunculus. For each application, Homunculus will generate
Spatial HDL code for an optimized DNN model, which runs on
the Taurus ASIC. The applications can be found at https://git-
lab.com/dataplane-ai/homunculus/applications, and the datasets
for the applications are available at https://gitlab.com/dataplane-
ai/homunculus/datasets. Included applications are: anomaly de-
tection (AD), traffic classification (TC), and botnet detection (BD).

Hosting. The source code and build instructions are publicly avail-
able on GitLab3 and a pre-built Docker image is a available on
figshare.4

Dependencies. The artifact relies on several third-party software
tools. If using the Docker image available on figshare, these software
tools are already installed. All dependencies are specified in the
artifact’s build files, but the primary dependencies are listed below:
• Spatial Hardware Description Language
• HyperMapper Black-Box Optimization Tool
• Plasticine Intermediate Representation (PIR)
• Plastiroute Router and Placement Analyzer
• Plastisim Cycle Approximate Simulator
• Tungsten Plasticine Simulator
• TensorFlow Platform
• Docker (if using the image on figshare)
3https://gitlab.com/dataplane-ai/homunculus/artifact-asplos23
4https://doi.org/10.6084/m9.figshare.22081901.v1

339

https://gitlab.com/dataplane-ai/homunculus/artifact-asplos23
https://gitlab.com/dataplane-ai/homunculus/artifact-asplos23
https://doi.org/10.6084/m9.figshare.22081901.v1
https://gitlab.com/dataplane-ai/homunculus/compiler
https://gitlab.com/dataplane-ai/homunculus/backends/taurus-asic
https://gitlab.com/dataplane-ai/homunculus/backends/taurus-asic
https://gitlab.com/dataplane-ai/homunculus/applications
https://gitlab.com/dataplane-ai/homunculus/applications
https://gitlab.com/dataplane-ai/homunculus/datasets
https://gitlab.com/dataplane-ai/homunculus/datasets
https://gitlab.com/dataplane-ai/spatial
https://github.com/luinardi/hypermapper/
https://gitlab.com/dataplane-ai/pir
https://gitlab.com/dataplane-ai/plastiroute
https://gitlab.com/dataplane-ai/plastisim
https://gitlab.com/dataplane-ai/tungsten
https://www.tensorflow.org/
https://www.docker.com/
https://gitlab.com/dataplane-ai/homunculus/artifact-asplos23
https://doi.org/10.6084/m9.figshare.22081901.v1

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In USENIX OSDI.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters. In ACM SIGCOMM.

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In ACM SIGCOMM.

[4] Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David W
Hogg, and Michael O’Neil. 2015. Fast Direct Methods for Gaussian Processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 2 (2015),
252–265.

[5] Nahla Ben Amor, Salem Benferhat, and Zied Elouedi. 2004. Naive Bayes vs
Decision Trees in Intrusion Detection Systems. In ACM Symposium on Applied
Computing (2004).

[6] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An Extensible Framework for Program Autotuning. In Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation. 303–316.

[7] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In USENIX NSDI (2020).

[8] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, AndrewWaterman, Ri-
mas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: Constructing
Hardware in a Scala Embedded Language. In DAC.

[9] Jarrod Bakker, Bryan Ng, Winston K.G. Seah, and Adrian Pekar. 2019. Traffic
Classification withMachine Learning in a Live Network. In IFIP/IEEE Symposium
on Integrated Network and Service Management (IM).

[10] Pierre Baldi and Peter J Sadowski. 2013. Understanding Dropout. Advances in
Neural Information Processing Systems 26 (2013), 2814–2822.

[11] Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello, Fernando
M. V. Ramos, and André Madeira. 2021. FlowLens: Enabling Efficient Flow
Classification for ML-based Network Security Applications. In NDSS.

[12] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In ACM IMC.

[13] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. Theano: A CPU and GPU Math Expression Compiler. In SciPy.

[14] J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architec-
tures. In International Conference on Machine Learning.

[15] Ekaba Bisong. 2019. Google AutoML: Cloud Vision. In BuildingMachine Learning
and Deep Learning Models on Google Cloud Platform. Springer, 581–598.

[16] Bruno Bodin, Luigi Nardi, M. Zeeshan Zia, Harry Wagstaff, Govind
Sreekar Shenoy, Murali Emani, John Mawer, Christos Kotselidis, Andy Nisbet,
Mikel Lujan, Björn Franke, Paul H.J. Kelly, and Michael O’Boyle. 2016. Integrat-
ing Algorithmic Parameters into Benchmarking and Design Space Exploration
in 3D Scene Understanding. In ACM PACT.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
ACM SIGCOMM CCR (2014).

[18] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Meta-
morphosis: Fast Programmable Match-Action Processing in Hardware for SDN.
In ACM SIGCOMM.

[19] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. 2018. A Comprehensive
Survey on Machine Learning for Networking: Evolution, Applications and
Research Opportunities. Journal of Internet Services and Applications (2018).

[20] Leo Breiman. 2001. Random Forests. Machine learning 45, 1 (2001), 5–32.
[21] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy

Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A Cloud-scale
Acceleration Architecture. In IEEE MICRO.

[22] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. AuTO: Scaling Deep
Reinforcement Learning for Datacenter-scale Automatic Traffic Optimization.
In ACM SIGCOMM.

[23] François Chollet et al. 2018. Keras: The Python Deep Learning Library. Astro-
physics Source Code Library (2018).

[24] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, Maleen Abeydeera, Logan Adams, Hari Angepat, Christian Boehn, Derek
Chiou, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen
Heil, Kyle Holohan, Ahmad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K.
Kovvuri, Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel,
Brandon Perez, Amanda Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek,
Raja Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods,
Phillip Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger. 2018. Serving DNNs
in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro (2018).

[25] Carla Currin, Toby Mitchell, Max Morris, and Don Ylvisaker. 1988. A Bayesian
Approach to the Design and Analysis of Computer Experiments. Technical Report.
Oak Ridge National Laboratory, TN (USA).

[26] L Dhanabal and SP Shantharajah. 2015. A Study on NSL-KDD Dataset for
Intrusion Detection System Based on Classification Algorithms. International
Journal of Advanced Research in Computer and Communication Engineering 4, 6
(2015), 446–452.

[27] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira.
2015. PCC: Re-Architecting Congestion Control for Consistent High Perfor-
mance. In USENIX NSDI.

[28] Adel Ejjeh, Vikram Adve, and Rob A Rutenbar. 2020. Studying the Potential of
Automatic Optimizations in the Intel FPGA SDK for OpenCL. In ACM/SIGDA
FPGA.

[29] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. Moongen: A Scriptable High-speed Packet Generator. In
ACM IMC.

[30] Alice Este, Francesco Gringoli, and Luca Salgarelli. 2009. Support Vector Ma-
chines for TCP traffic classification. Computer Networks (2009).

[31] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: Efficient and Robust
Automated Machine Learning. In Automated Machine Learning.

[32] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In USENIX NSDI.

[33] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and
John P Cunningham. 2014. Bayesian Optimization with Inequality Constraints.
In ICML.

[34] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. 2014. Bayesian Optimiza-
tion with Unknown Constraints. arXiv preprint arXiv:1403.5607 (2014).

[35] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-
blum, and Amin Vahdat. 2019. SIMON: A Simple and Scalable Method for
Sensing, Inference and Measurement in Data Center Networks. In USENIX
NSDI.

[36] Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi,
WeikangQiao, Alireza Kaviani, Zhiru Zhang, and Jason Cong. 2022. RapidStream:
Parallel Physical Implementation of FPGA HLS Designs. In Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
1–12.

[37] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-Friendly
High-Speed TCP Variant. ACM SIGOPS Operating Systems Review (2008).

[38] B. Hariri and N. Sadati. 2007. NN-RED: An AQM Mechanism Based on Neural
Networks. Electronics Letters (2007). https://doi.org/10.1049/el:20071791

[39] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the
State-of-the-Art. Knowledge-Based Systems (2021).

[40] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. 1998. Support
vector machines. IEEE Intelligent Systems and their Applications (1998).

[41] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New
Directions in Automated Traffic Analysis. In ACM SIGSAC CCS.

[42] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. 2017. Gray Failure: The Achilles’ Heel
of Cloud-Scale Systems. In HotOS.

[43] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated Machine
Learning: Methods, Systems, Challenges. Springer Nature.

[44] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019.
The P4->NetFPGA Workflow for Line-Rate Packet Processing. In ACM/SIGDA
FPGA.

[45] Intel. last accessed: 06/10/2022. Infrastructure Processing Unit (Intel IPU) and
SmartNICs. https://www.intel.com/content/www/us/en/products/network-io/
smartnic.html.

[46] Intel. last accessed: 06/10/2022. Tofino: P4-programmable Ethernet
Switch ASIC that Delivers Better Performance at Lower Power. https:
//www.intel.com/content/www/us/en/products/network-io/programmable-
ethernet-switch/tofino-series.html.

340

https://doi.org/10.1049/el:20071791
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter Networks ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[47] Intel. last accessed: 06/10/2022. Tofino2: Second-generation P4-programmable
Ethernet Switch ASIC that Continues to Deliver Programmability without
Compromise. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-2-series.html.

[48] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
2019. A Deep Reinforcement Learning Perspective on Internet Congestion
Control. In ICML.

[49] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural
Architecture Search System. In ACM SIGKDD.

[50] Radhakrishna Kamath and Krishna M Sivalingam. 2021. Machine Learning
Based Flow Classification in DCNs Using P4 Switches. In IEEE ICCCN.

[51] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes.
In ACM SOSR.

[52] Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt. 2017.
GPflowOpt: A Bayesian Optimization Library Using TensorFlow. arXiv preprint
arXiv:1711.03845 (2017).

[53] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Had-
jis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Application
Accelerators. In ACM SIGPLAN PLDI.

[54] Angelo Cardoso Lapolli, Jonatas Adilson Marques, and Luciano Paschoal Gas-
pary. 2019. Offloading Real-time DDoS Attack Detection to Programmable Data
Planes. In IFIP/IEEE Symposium on Integrated Network and Service Management
(IM).

[55] Guanyu Li, Menghao Zhang, Shicheng Wang, Chang Liu, Mingwei Xu, Ang
Chen, Hongxin Hu, Guofei Gu, Qi Li, and Jianping Wu. 2021. Enabling Perfor-
mant, Flexible and Cost-Efficient DDoS Defense With Programmable Switches.
IEEE/ACM Transactions on Networking (2021).

[56] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
2019. HPCC: High Precision Congestion Control. In ACM SIGCOMM.

[57] Yingqiu Liu, Wei Li, and Yunchun Li. 2007. Network Traffic Classification Using
K-means Clustering. In IMSCCS.

[58] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen:
A High-Performance Switch-Native Approach for Detecting and Mitigating
Volumetric DDoS Attacks with Programmable Switches. In USENIX Security.

[59] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In ACM HotNets.

[60] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In ACM SIGCOMM.

[61] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data
Processing Clusters. In Proceedings of the ACM Special Interest Group on Data
Communication.

[62] Wes McKinney et al. 2011. pandas: A Foundational Python Library for Data
Analysis and Statistics. Python for High Performance and Scientific Computing
14, 9 (2011), 1–9.

[63] Tahir Mehmood and Helmi B Md Rais. 2015. SVM for Network Anomaly
Detection using ACO Feature Subset. In IEEE iSMSC.

[64] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. 1978. The Application of
Bayesian Methods for Seeking the Extremum. Toward Global Optimization 2,
117-129 (1978), 2.

[65] John Moody. 1994. Prediction Risk and Architecture Selection for Neural Net-
works. In From Statistics to Neural Networks. Springer, 147–165.

[66] Pratik Narang, Subhajit Ray, Chittaranjan Hota, and Venkat Venkatakrishnan.
2014. Peershark: Detecting Peer-to-Peer Botnets by Tracking Conversations. In
IEEE Security and Privacy Workshop.

[67] Luigi Nardi, Bruno Bodin, Sajad Saeedi, Emanuele Vespa, Andrew J Davison,
and Paul HJ Kelly. 2017. Algorithmic Performance-accuracy Trade-off in 3D
Vision Applications using Hypermapper. In IEEE IPDPSW.

[68] Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical Design
Space Exploration. In IEEE MASCOTS.

[69] Nvidia. last accessed: 06/10/2022. Bluefield Data Processing Units (DPUs).
https://www.nvidia.com/en-us/networking/products/data-processing-unit/.

[70] ONF. last accessed: 06/10/2022. ONOS: OpenNetworkOperating System (ONOS).
https://opennetworking.org/onos/.

[71] ONF. last accessed: 06/10/2022. Stratum: Enabling the era of next generation
SDN. https://opennetworking.org/stratum/.

[72] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. 2019. A Flexible
Framework for Multi-Objective Bayesian Optimization using Random Scalariza-
tions. In UAI.

[73] Pascal Poupart, Zhitang Chen, Priyank Jaini, Fred Fung, Hengky Susanto, Yanhui
Geng, Li Chen, Kai Chen, and Hao Jin. 2016. Online Flow Size Prediction for
Improved Network Routing. In IEEE ICNP.

[74] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.

Plasticine: A Reconfigurable Architecture for Parallel Patterns. In ACM/IEEE
ISCA.

[75] Andrew Putnam. 2017. FPGAs in the Datacenter: Combining the Worlds of
Hardware and Software Development. In GLSVLSI.

[76] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services. In ACM/IEEE ISCA.

[77] Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and Kang Li. 2013. PeerRush:
Mining for Unwanted P2P Traffic. In DIMVA.

[78] Sajad Saeedi, Luigi Nardi, Edward Johns, Bruno Bodin, Paul HJ Kelly, and An-
drew J Davison. 2017. Application-oriented Design Space Exploration for SLAM
Algorithms. In IEEE ICRA.

[79] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. 2018. Can the
Network Be the AI Accelerator?. In ACM NetCompute.

[80] Giuseppe Siracusano and Roberto Bifulco. 2018. In-network Neural Networks.
arXiv preprint arXiv:1801.05731 (2018).

[81] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. 2022. Re-
architecting Traffic Analysis with Neural Network Interface Cards. In USENIX
NSDI.

[82] John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. 2021. Lucid:
A Language for Control in the Data Plane. In ACM SIGCOMM.

[83] Le Song, Santosh Vempala, John Wilmes, and Bo Xie. 2017. On the Complexity
of Learning Neural Networks. arXiv preprint arXiv:1707.04615 (2017).

[84] Artur Souza, Luigi Nardi, Leonardo BOliveira, Kunle Olukotun, Marius Lindauer,
and Frank Hutter. 2021. Bayesian Optimization with a Prior for the Optimum.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases.

[85] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle
Olukotun. 2022. Taurus: A Data Plane Architecture for per-Packet ML. In ACM
ASPLOS.

[86] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir
Ghogho. 2016. Deep Learning Approach for Network Intrusion Detection in
Software Defined Networking. In IEEE WINCOM.

[87] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. 2009. A
Detailed Analysis of the KDD CUP 99 Dataset. In IEEE CISDA.

[88] Lisa Torrey and Jude Shavlik. 2010. Transfer Learning. In Handbook of Re-
search on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques. IGI global, 242–264.

[89] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlas, Muhsen Owaida, Ce
Zhang, and Ankit Singla. 2019. Is Advance Knowledge of Flow Sizes a Plausible
Assumption?. In USENIX NSDI.

[90] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A Survey of
Transfer Learning. Journal of Big data 3, 1 (2016), 1–40.

[91] Keith Winstein and Hari Balakrishnan. 2013. TCP ex machina: Computer-
generated Congestion Control. In ACM SIGCOMM CCR.

[92] Yuanlong Xiao, Eric Micallef, Andrew Butt, Matthew Hofmann, Marc Alston,
Matthew Goldsmith, Andrew Merczynski-Hait, and André DeHon. 2022. PLD:
Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with
Modern Incremental Refinement Software Development. In ACM ASPLOS.

[93] Xilinx. last accessed: 06/10/2022. Alveo U250 Data Center Accelerator Card.
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html.

[94] Xilinx. last accessed: 06/10/2022. Running Multiple Implementation Strategies
for Timing Closure. https://docs.xilinx.com/r/en-US/ug1393-vitis-application-
acceleration/Running-Multiple-Implementation-Strategies-for-Timing-
Closure.

[95] Xilinx. last accessed: 06/10/2022. UltraScale+ Integrated 100G Ethernet Subsys-
tem. https://www.xilinx.com/products/intellectual-property/cmac_usplus.html.

[96] Xilinx. last accessed: 06/10/2022. Vivado. https://www.xilinx.com/products/
design-tools/vivado.html.

[97] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learn-
ing? Toward In-network Classification. In ACM HotNets.

[98] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: A Randomized
Experiment in Video Streaming. In USENIX NSDI.

[99] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip
Levis, and Keith Winstein. 2018. Pantheon: The Training Ground for Internet
Congestion-Control Research. In USENIX ATC.

[100] Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben Xia, Derui Liu, and Weishan
Deng. 2021. ACC: Automatic ECN Tuning for High-Speed Datacenter Networks.
In ACM SIGCOMM.

[101] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive Prog-
rammable Switches. In ACM SIGCOMM.

[102] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
Resolution Measurement of Data Center Microbursts. In ACM IMC.

341

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://opennetworking.org/onos/
https://opennetworking.org/stratum/
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Running-Multiple-Implementation-Strategies-for-Timing-Closure
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Running-Multiple-Implementation-Strategies-for-Timing-Closure
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Running-Multiple-Implementation-Strategies-for-Timing-Closure
https://www.xilinx.com/products/intellectual-property/cmac_usplus.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun

[103] Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shahbaz, and
Kunle Olukotun. 2021. SARA: Scaling a Reconfigurable Dataflow Accelerator.
In ACM/IEEE ISCA.

[104] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In

ACM SIGCOMM.
[105] Lucas Zimmer, Marius Lindauer, and Frank Hutter. 2021. Auto-Pytorch: Multi-

Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021).

342

	Abstract
	1 Introduction
	2 Background & Motivation
	3 The Homunculus Design
	3.1 The Alchemy Frontend
	3.2 The Optimization Core
	3.3 The Backend Code Generator

	4 Implementation
	5 Evaluation
	5.1 Microbenchmarks
	5.2 End-to-End Hardware Evaluation

	6 Limitations & Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	A BO-Guided DSE Formulation
	B Artifact Appendix
	References

