
POSTER: Kairo – Incremental View Maintenance for
Scalable Virtual Switch Caching

Annus Zulfiqar, Ben Pfaff†, Gianni Antichi‡⇤, Muhammad Shahbaz
University of Michigan †Feldera ‡Queen Mary University of London ⇤Politecnico di Milano

1 MOTIVATION & GOALS
Data centers manage complexity by delegating simple, high-
speed packet forwarding to the network fabric and rely
on virtual switches (vSwitches) at the end hosts to enforce
complex policies—managing connectivity across physical
interfaces, containers, and virtual machines (VMs). Since
their inception, several key optimizations, including wild-
card caches [14], faster lookups using learned index mod-
els [15, 16], and high hit-rate SmartNIC offloads [24, 25], have
significantly improved vSwitch forwarding performance. Yet,
supporting fast vSwitch policy updates has largely been over-
looked as they were not deemed performance-critical.

In this paper, we argue that, owing to the architectural evo-
lution of modern vSwitches for performance (from # -table
policy to single-table caching [14, 16, 19]) and infrastruc-
ture scaling driven by increased link rates and the frequent,
diverse update patterns introduced by emerging tenant work-
loads (e.g., distributed training in the cloud [9, 12, 20, 23] and
fast inference at the edge [6, 21])—the unwieldy (bottom-up)
vSwitch update mechanism (Figure 1a) has become the pri-
mary bottleneck in scaling vSwitch cache sizes to support
larger flow rule sets while sustaining high performance.

To address this, we present Kairo. We make the case for
framing the problem ofmaintaining vSwitch cache state as an
instance of the Incremental View Maintenance (IVM) prob-
lem [4, 10], where cached lookups are efficiently updated by
reacting only to changes in vSwitch rules in a top-downman-
ner (Figure 1b), rather than recomputing from scratch. We
also outline the key challenges of applying IVM techniques
in this setting.
1.1 Cache Evolution in Virtual Switches
To support emerging network virtualization use cases [8, 11,
18], vSwitches have evolved into multi-table packet pipeline
processors [14, 16, 19], supporting intricate control flows to
implement complex network policies [14, 25]. To cater for
such flexibility and deliver high performance at the end host,
the Open vSwitch (OVS) introduced Microflow [14, 19] as
a fast exact-match cache and relegated the full pipeline to
a slow-path for cache misses. Later, wildcarded Megaflow
cache [14, 16, 19] significantly reduced cache misses while
NuevomatchUP [16] optimized the cache lookup speed by
replacing the Tuple Space Search classifier with Machine
Learning based learned index models [15]. More recently,
Gigaflow [24, 25] proposed a multi-table cache for SmartNIC

vSwitch Pipeline

Cache
with ! entries

Trigger

Validation
Cost " !

(a) Traditional

vSwitch Pipeline

Cache
with ! entries

(b) KAIRO

IVM
Traversals →

(#)
Validation
Cost " #

where
! ≫ #

Update (%) Update (%)

Figure 1: Comparison of (a) traditional (bottom-up)
OVS updates versus (b) our proposal, Kairo, (top-
down)—with update cost independent of cache size (E).

offloads that leverages pipeline-aware locality, further im-
proving hit rates beyondMegaflow.With these optimizations,
vSwitch caching has become indispensable for delivering
high throughput and low latency, but maintaining a consis-
tent (update-to-date) view of the vSwitch pipeline poses a
significant challenge while scaling to larger cache sizes (e.g.,
tens of millions of rules per vSwitch) [16, 25, 26].

• Updating vSwitch Caches: The Traditional Approach.
The vSwitch cache [14, 19] captures traversals [25] (i.e., a
complete sequence of table lookups through the vSwitch
pipeline) as single cache entries. However, when vSwitch
rules are updated with insertions or deletions, there is no
straightforward way to determine which cache entries must
change—and how they must change. This challenge arises
because the pipeline stores wildcarded rules with priorities,
meaning that any rule update can potentially invalidate an
arbitrary cache entry. As a result, vSwitches resort to re-
evaluating the entire cache [14] by re-executing complete
traversals of each entry through the pipeline1 in order to
evict invalidated entries and update others in place, resulting
in $ (⇢) complexity, where ⇢ is the cache size (Figure 1a).

To understand the cost of this bottom-up revalidation
approach as cache sizes grow, we set up the Cord OFDPA
pipeline (OFD, 10 tables) pipeline [13] in OVS and generate a
workload of 1M unique flows. We then apply rule updates at
runtime and measure the time-to-update (TTU) of the cache.
As shown in Figure 2, larger caches significantly improve
hit rates and reduce cache misses. However, TTU increases
1This process, known as cache revalidation, also translates cache statistics
(e.g., hits) into flow stats for the pipeline; not on the critical path.

1



75
81
86
92
98

20
0K

40
0K

60
0K

80
0K 1M

H
it 

R
at

e 
%

(a) Cache Hits

●

●

●

●

●

0.0
1.5M
3.0M
4.5M
6.0M

20
0K

40
0K

60
0K

80
0K 1M

#M
is

se
s

(b) Cache Misses

0.50
1.16
1.82
2.49
3.15

20
0K

40
0K

60
0K

80
0K 1M

TT
U

 (s
)

(c) Time−to−Update
Figure 2: Cache hits (%), cache misses, and time-to-
update vSwitch (TTU) with increasing Megaflow cache
size using the Cord OFDPA pipeline (OFD) [13].

linearly with cache size, leading to longer periods of stale
cache usage (i.e., outdated entries used after rule changes,
leading to incorrect forwarding). Moreover, deeper pipelines
exacerbate the cost since each cache entry triggers a com-
plete pipeline traversal during revalidation. For instance,
revalidating 500K entries takes 1.62 s in Cord OFDPA (OFD,
10 tables) [13], compared to 3.6 s in Antrea OVS (ANT, 22
tables) [1–3].

These inefficiencies become even more pronounced at
higher link rates (e.g., 400Gbps) and under emerging update
patterns [16, 25], where slow cache updates can prolong
policy inconsistencies [7, 14], exacerbate routing errors due
to stale flows [14, 17], waste CPU and bandwidth, and delay
responses to network events [17, 22].

To mitigate these issues and ensure correct packet process-
ing under frequent or critical updates, OVS thus limits its
Megaflow cache size to 200K entries [14]—a trade-off that bal-
ances the performance benefits of caching with the overhead
of managing invalid entries during delayed updates.

2 CACHE UPDATES AS AN IVM PROBLEM
In this paper, we introduce Kairo, which reimagines cache
maintenance as an instance of the Incremental View Mainte-
nance (IVM) problem [4, 10]. Rather than reprocessing the
entire cache on every rule update, Kairo incrementally up-
dates only the affected parts of the cache using a top-down
strategy (Figure 1b). This approach enables faster responses
to rule changes and decouples update cost from cache size.

In database systems, IVM maintains a view + = & (⇡⌫)
over a frequently updated database ⇡⌫ by computing
the delta �+ from changes in the underlying database
�⇡⌫—without re-evaluating the full query & . Drawing on
this model, we treat the vSwitch rule tables as the base data-
base and the cache as a collection of materialized views, each
representing a unique traversal () ) through the pipeline.This
abstraction is especially effective in vSwitches, where rule up-
dates typically affect a small subset of entries (on the order of
tens to hundreds), while the cache may represent millions of
flows [14, 16, 25]. By focusing only on incremental changes,
Kairo enables faster, update-bound maintenance that scales
more efficiently than traditional full-cache revalidation.

Update Scheme Time-to-Update (TTU)

100K 150K 200K

Traditional 335.00ms 503.00ms 670.00ms
Kairo 2.72ms 3.01ms 3.20ms

Table 1: Time-to-update (TTU): Kairo vs traditional
(bottom-up) with increasing Megaflow cache sizes with
Cord OFDPA (OFD, 10 tables) [13] pipeline.
• Traversals as RelationalQueries for IVM. At the core
of Kairo is the concept of maintaining traversals—linear,
unrolled paths through the vSwitch pipeline—as first-class
queries. Each traversal captures the decision logic for a par-
ticular control flow based on the current rule set. Traversals
are constructed on demand during cache misses and main-
tained as partial views of the pipeline.When a rule is updated,
Kairo uses IVM to adjust only the affected traversals. This
targeted update strategy avoids the combinatorial explosion
that would result from materializing all possible rule combi-
nations across tables, and ensures that the update cost scales
with the number of impacted traversals, $ () ), not with the
total cache size, $ (⇢).

When a new packet arrives, Kairo checks whether it
matches an existing traversal: (1) New Traversal: If no match
is found, a new query is generated to represent the packet’s
traversal, added to the cache, and incrementally maintained
with future rule updates. (2) Existing Traversal: If the packet
matches an existing traversal, it is recorded in a packet ta-
ble associated with that traversal. Any future rule updates
affecting this traversal trigger incremental updates to the
corresponding cache entry. This per-traversal, traffic-driven
update model ensures cache consistency without reprocess-
ing unaffected flows. It also aligns naturally with demand-
driven caching, where only active parts of the rule space are
materialized.

3 PRELIMINARY EVALUATION
We use DBSP [4, 5] as our IVM engine to evaluate Kairo.
We implement the Cord OFDPA (OFD) pipeline using DBSP
along with a set of incremental queries, each representing a
traversal corresponding to a segment of the Megaflow cache.
We then populate the pipeline’s tables and apply rule updates
in a manner that mirrors how Open vSwitch (OVS) performs
them at runtime.

Table 1 compares the time-to-update (TTU) performance
of Kairo with the traditional bottom-up OVS update scheme
across varying Megaflow cache sizes using the OFD pipeline.
The conventional approach scales poorly, with TTU reaching
670ms at 200K entries. In contrast, Kairo can achieve up
to two orders of magnitude lower TTU, maintaining sub-
4ms update times even as cache size increases from 100K to
200K entries, demonstrating the potential of IVM to decouple
updates from cache size.

2



REFERENCES
[1] Antrea. Antrea: Enhance pod networking and enforce network

policies for Kubernetes clusters. https://antrea.io/, last accessed:
05/18/2025.

[2] Antrea. Antrea OVS Pipeline. https://antrea.io/docs/main/docs/
design/ovs-pipeline/, last accessed: 05/18/2025.

[3] Antrea-IO. Antrea OVS Pipeline. https://github.com/antrea-
io/antrea/blob/main/docs/design/ovs-pipeline.md, last accessed:
05/18/2025.

[4] Budiu, M., Chajed, T., McSherry, F., Ryzhyk, L., and Tannen, V.
DBSP: Automatic Incremental View Maintenance for Rich Query Lan-
guages. VLDB (2023).

[5] Feldera. Batch jobs waste 99.9% of their time reprocessing unchanged
data. https://www.feldera.com/, last accessed: 05/21/2025.

[6] Gobieski, G., Lucia, B., and Beckmann, N. Intelligence Beyond the
Edge: Inference on Intermittent Embedded Systems. In ACM ASPLOS
(2019).

[7] Joe Stringer. Revaliwhat? Keeping Kernel Flows Fresh. https://www.
openvswitch.org/support/ovscon2014/18/1230-revaliwhat.pdf, last ac-
cessed: 05/18/2025.

[8] Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A.,
Fulton, B., Ganichev, I., Gross, J., Ingram, P., Jackson, E., Lambeth,
A., Lenglet, R., Li, S.-H., Padmanabhan, A., Pettit, J., Pfaff, B.,
Ramanathan, R., Shenker, S., Shieh, A., Stribling, J., Thakkar, P.,
Wendlandt, D., Yip, A., and Zhang, R. Network Virtualization in
Multi-tenant Datacenters. In USENIX NSDI (2014).

[9] Lao, C., Le, Y., Mahajan, K., Chen, Y., Wu,W., Akella, A., and Swift,
M. ATP: In-network aggregation for multi-tenant learning. In USENIX
NSDI (2021).

[10] Materialized View. Everything You Need to Know About Incremen-
tal View Maintenance. https://materializedview.io/p/everything-to-
know-incremental-view-maintenance, last accessed: 05/18/2025.

[11] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Pe-
terson, L., Rexford, J., Shenker, S., and Turner, J. OpenFlow:
Enabling Innovation in Campus Networks. In ACM SIGCOMM CCR
(2008).

[12] Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur,
N. R., Ganger, G. R., Gibbons, P. B., and Zaharia, M. PipeDream:
generalized pipeline parallelism for DNN training. In ACM SOSP
(2019).

[13] OF-DPA, C. OpenSwitch OF-DPA User Guide. https://netbergtw.com/
wp-content/uploads/Files/OPS_of_dpa.pdf, last accessed: 05/18/2025.

[14] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme,
J., Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon, K., and
Casado, M. The design and implementation of open vSwitch. In
USENIX NSDI (2015).

[15] Rashelbach, A., Rottenstreich, O., and Silberstein, M. A Compu-
tational Approach to Packet Classification. In ACM SIGCOMM (2020).

[16] Rashelbach, A., Rottenstreich, O., and Silberstein, M. Scaling
Open vSwitch with a Computational Cache. In USENIX NSDI (2022).

[17] Swamy, T., Rucker, A., Shahbaz, M., Gaur, I., and Olukotun, K.
Taurus: A Data Plane Architecture for per-Packet ML. In ASPLOS
(2022).

[18] Tourrilhes, J., Pettit, J., et al. OpenFlow switch specification,
version 1.5.1 (protocol version 0x06). https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf, last accessed:
05/18/2025.

[19] Tu, W., Wei, Y.-H., Antichi, G., and Pfaff, B. Revisiting the open
vswitch dataplane ten years later. In ACM SIGCOMM (2021).

[20] Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li, H.
Terngrad: ternary gradients to reduce communication in distributed

deep learning. In NeurIPS (2017).
[21] Xu, X., Ding, Y., Hu, S. X., Niemier, M., Cong, J., Hu, Y., and Shi,

Y. Scaling for edge inference of deep neural networks. In Nature
Electronics (2018).

[22] Yu, L., Sonchack, J., and Liu, V. Mantis: Reactive Programmable
Switches. In ACM SIGCOMM (2020).

[23] Zinkevich, M., Weimer, M., Li, L., and Smola, A. Parallelized Sto-
chastic Gradient Descent. In NeurIPS (2010).

[24] Zulfiqar, A., Imran, A., Kunaparaju, V., Pfaff, B., Antichi, G.,
and Shahbaz, M. A Smart Cache for a SmartNIC! Scaling End-Host
Networking to 400Gbps and Beyond. In IEEE Hot Chips (2024).

[25] Zulfiqar, A., Imran, A., Kunaparaju, V., Pfaff, B., Antichi, G., and
Shahbaz, M. Gigaflow: Pipeline-Aware Sub-Traversal Caching for
Modern SmartNICs. In ACM ASPLOS (2025).

[26] Zulfiqar, A., Pfaff, B., Tu, W., Antichi, G., and Shahbaz, M. The
Slow Path Needs an Accelerator Too! In ACM SIGCOMM CCR (2023).

3


