
vSwitch Pipeline

Cache
with ! entries

Trigger

Update (")

Validation
Cost # !

Kairo – Incremental View Maintenance
For Scalable Virtual Switch Caching

Annus Zulfiqar, Ben Pfaff1, Gianni Antichi2, Muhammad Shahbaz
University of Michigan, 1Feldera, 2Politecnico di Milano

Towards Incremental View Maintenance for vSwitch Updates

Rule Updates are a Major Performance Bottleneck in vSwitches

Contact us: zulfiqaa@umich.edu

• Virtual switches (vSwitches) optimize performance by 
caching multi-table lookups into single-table 
caches and ensure consistency by revalidating the 
entire cache every second

• The operational environments often require 
frequent rule churn arising from policy updates, 
periodic maintenance, service chain updates, load 
balancing, auto-scaling services, security responses, 
and flow expiry Fig 1: Traditionally, vSwitch rule updates 

require bottom-up full cache revalidation

Virtual Switches Experience Frequent Rule Updates

75
81
86
92
98

20
0K

40
0K

60
0K

80
0K 1M

H
it 

R
at

e 
%

(a) Cache Hits

●

●

●

●

●

0.0
1.5M
3.0M
4.5M
6.0M

20
0K

40
0K

60
0K

80
0K 1M

#M
is

se
s

(b) Cache Misses

0.50
1.16
1.82
2.49
3.15

20
0K

40
0K

60
0K

80
0K 1M

TT
U

 (s
)

(c) Time−to−Update

75
81
86
92
98

20
0K

40
0K

60
0K

80
0K 1M

H
it 

R
at

e 
%

(a) Cache Hits

●

●

●

●

●

0.0
1.5M
3.0M
4.5M
6.0M

20
0K

40
0K

60
0K

80
0K 1M

#M
is

se
s

(b) Cache Misses

0.50
1.16
1.82
2.49
3.15

20
0K

40
0K

60
0K

80
0K 1M

TT
U

 (s
)

(c) Time−to−Update

Fig 2: vSwitch performance scales with cache size 
but supporting rule updates in a reasonable time 

severely limits the realizable benefits

• Scaling to larger cache size 
significantly improves vSwitch 
performance owing to higher hit rates 
and lower cache misses

• But the cost of updating the vSwitch 
also scales proportional to cache size

• To support vSwitch updates in a 
reasonable time interval (1 sec), OVS 
limits the cache size to only 200K!

! = #!! = #" ! = ##
$%&'(#)
	∆!

,-!.(
∆#"

,-!.(
∆#!

,-!.(
∆##

/-.()	∆/"

0%1

2%#&ℎ()	∆2"

4!(56.78	
		,%9.(	,"

/-.()	∆/!

∆2!

∆∆ ∆

∆

,%9.(
	,#

∆/#
∆/$

∆2#

∆2$

,%9.(
	,!

2(:%6.78)	
∆2;

vSwitch Pipeline

Cache
with ! entries

IVM
Traversals →

(")
Validation
Cost # "

where
! ≫ "

Update (%)

Fig 3: IVM has the potential 
for efficient top-down updates 

Fig 4: A DBSP circuit representation of an Openflow pipeline with rules 
and packets as input streams and IVM for efficient cache updates

• Kairo frames vSwitch updates as an instance of the Incremental View Maintenance (IVM) 
problem and supports updates by reacting only to rule changes in a top-down manner

• Kairo maintains traversals—linear, unrolled paths through the vSwitch pipeline—as first-
class queries that capture the decision logic for each individual control flow of the rule set

• As rule updates (∆𝑅) are much smaller than the cache size (𝐸), an IVM engine such as DBSP 
can update a 200K entry cache in 3.2ms vs 670ms for traditional bottom-up updates in OVS!


