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Virtual Switches Experience Frequent Rule Updates
Update (U)

* Virtual switches (vSwitches) optimize performance by

caching multi-table lookups into single-table
caches and ensure consistency by revalidating the
entire cache every second
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* The operational environments often require
frequent rule churn arising from policy updates,
periodic maintenance, service chain updates, load

balancing, auto-scaling services, security responses,
and flow expiry
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Fig 1: Traditionally, vSwitch rule updates
require bottom-up full cache revalidation

» Scaling to larger cache size

significantly improves vSwitch

performance owing to higher hit rates

and lower cache misses

» But the cost of updating the vSwitch
also scales proportional to cache size

* To support vSwitch updates in a

reasonable time interval (1 sec), OVS
limits the cache size to only 200K!
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Rule Updates are a Major Performance Bottleneck in vSwitches
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(c) Time-to-Update

Fig 2: vSwitch performance scales with cache size
but supporting rule updates in a reasonable time
severely limits the realizable benefits

Towards Incremental View Maintenance for vSwitch Updates

» Kairo frames vSwitch updates as an instance of the Incremental View Maintenance (IVM)
problem and supports updates by reacting only to rule changes in a top-down manner

» Kairo maintains traversals—Ilinear, unrolled paths through the vSwitch pipeline—as first-
class queries that capture the decision logic for each individual control flow of the rule set

* As rule updates (AR) are much smaller than the cache size (E), an IVM engine such as DBSP
can update a 200K entry cache in 3.2ms vs 670ms for traditional bottom-up updates in OVS!
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Fig 3: IVM has the potential
for efficient top-down updates
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Fig 4: A DBSP circuit representation of an Openflow pipeline with rules
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and packets as input streams and IVM for efficient cache updates



