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Towards Incremental View Maintenance for vSwitch Updates

Rule Updates are a Major Performance Bottleneck in vSwitches
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• Virtual switches (vSwitches) optimize performance by 
caching multi-table lookups into single-table 
caches and ensure consistency by revalidating the 
entire cache every second

• The operational environments often require 
frequent rule churn arising from policy updates, 
periodic maintenance, service chain updates, load 
balancing, auto-scaling services, security responses, 
and flow expiry Fig 1: Traditionally, vSwitch rule updates 

require bottom-up full cache revalidation

Virtual Switches Experience Frequent Rule Updates
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Fig 2: vSwitch performance scales with cache size 
but supporting rule updates in a reasonable time 

severely limits the realizable benefits

• Scaling to larger cache size 
significantly improves vSwitch 
performance owing to higher hit rates 
and lower cache misses

• But the cost of updating the vSwitch 
also scales proportional to cache size

• To support vSwitch updates in a 
reasonable time interval (1 sec), OVS 
limits the cache size to only 200K!
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Fig 3: IVM has the potential 
for efficient top-down updates 

Fig 4: A DBSP circuit representation of an Openflow pipeline with rules 
and packets as input streams and IVM for efficient cache updates

• Kairo frames vSwitch updates as an instance of the Incremental View Maintenance (IVM) 
problem and supports updates by reacting only to rule changes in a top-down manner

• Kairo maintains traversals—linear, unrolled paths through the vSwitch pipeline—as first-
class queries that capture the decision logic for each individual control flow of the rule set

• As rule updates (∆𝑅) are much smaller than the cache size (𝐸), an IVM engine such as DBSP 
can update a 200K entry cache in 3.2ms vs 670ms for traditional bottom-up updates in OVS!


