UNIVERSITY OF

MICHIGAN

Kairo — Incremental View Maintenance
For Scalable Virtual Switch Caching

Annus Zulfigar, Ben Pfaff!, Gianni Antichi¢, Muhammad Shahbaz

University of Michigan, 'Feldera, 42Politecnico di Milano

Virtual Switches Experience Frequent Rule Updates
Update (U)

* Virtual switches (vSwitches) optimize performance by

caching multi-table lookups into single-table
caches and ensure consistency by revalidating the
entire cache every second

Validation
Cost O(E)

* The operational environments often require
frequent rule churn arising from policy updates,
periodic maintenance, service chain updates, load

balancing, auto-scaling services, security responses,
and flow expiry

vSwitch Pipeline

»

Trigger

, || D

Cache
with E entries

Fig 1: Traditionally, vSwitch rule updates
require bottom-up full cache revalidation

» Scaling to larger cache size

significantly improves vSwitch

performance owing to higher hit rates

and lower cache misses

» But the cost of updating the vSwitch
also scales proportional to cache size

* To support vSwitch updates in a

reasonable time interval (1 sec), OVS
limits the cache size to only 200K!

08 - 6.0M -
3)
> 92- 4.5M -
© 86 - _
T 86 § 3.0M
75-1 11 0.0-
SSSS s
C:> o O —
< O©

(a) Cache Hits

200K -

!
=

400K -
600K -
800K -

(b) Cache Misses

» 2.49 -

Rule Updates are a Major Performance Bottleneck in vSwitches

3.15-

> 1.82-

|_

— 1.16-
0.50 -

(c) Time-to-Update

Fig 2: vSwitch performance scales with cache size
but supporting rule updates in a reasonable time
severely limits the realizable benefits

Towards Incremental View Maintenance for vSwitch Updates

» Kairo frames vSwitch updates as an instance of the Incremental View Maintenance (IVM)
problem and supports updates by reacting only to rule changes in a top-down manner

» Kairo maintains traversals—Ilinear, unrolled paths through the vSwitch pipeline—as first-
class queries that capture the decision logic for each individual control flow of the rule set

* As rule updates (AR) are much smaller than the cache size (E), an IVM engine such as DBSP
can update a 200K entry cache in 3.2ms vs 670ms for traditional bottom-up updates in OVS!

Update (U)

v

vSwitch Pipeline

(T)

raversals — |||

IVM

: || K

Cache

Validation
Cost O(T)

where

E>T

with E entries

Fig 3: IVM has the potential
for efficient top-down updates

Packets
Ap

Openflow
Table T, Rules AR,
M
Tuple| Tuple Tuple
Atl l Atz l AtB l

1 D p =

[P DXlp = 1, [F---+{ D p = ¢

’

> max [«

v
Matches AM,

Rules AR,

v

Table
15

v

AM,,

ARy
AR ?%I—#ﬂ
—¥

Table |||
I3

[Wam,
AM;"

Megaflows
AMF

Fig 4: A DBSP circuit representation of an Openflow pipeline with rules

Contact us: zulfigaa@umich.edu

and packets as input streams and IVM for efficient cache updates

