
SpliDT: Partitioned Decision Trees for
Scalable Stateful Inference at Line Rate

Murayyiam Parvez•, Annus Zulfiqar1•, Roman Beltiukov2•, Shir Landau Feibish3,
Walter Willinger4, Arpit Gupta2, Muhammad Shahbaz1

Purdue University 1University of Michigan 2UCSB 3The Open University of Israel 4NIKSUN Inc. — •Student

1 MOTIVATION & GOALS
Machine learning is increasingly being deployed in pro-
grammable network switches to enable real-time traffic anal-
ysis and security monitoring. Decision trees (DTs) offer a
powerful approach for these tasks due to their interpretabil-
ity and transparency. However, existing DT implementations
in switches face a critical limitation: they require collecting
all features before making a decision. This constraint forces
models to use a small, fixed set of features per flow, limiting
accuracy and scalability.
This paper introduces SpliDT, a scalable framework that

removes this feature constraint through a partitioned infer-
ence architecture (Figure 1). Instead of requiring the same
fixed features for all decisions, SpliDT assigns different sets
of features to different parts of the tree and dynamically se-
lects them as needed. To efficiently manage resources, SpliDT
leverages recirculation to reuse registers and match keys at
line rate. These capabilities are enabled by two core innova-
tions: (1) a mechanism for tracking and managing inference
across partitions using Sub-Tree IDs (SIDs) and (2) a cus-
tom training framework using HyperMapper and Bayesian
Optimization to optimize decision tree structure and fea-
ture allocation. Our evaluation shows that SpliDT achieves
higher accuracy while accommodating up to 5× more state-
ful features and scaling to millions of flows, significantly
outperforming state-of-the-art approaches like NetBeacon
and Leo. Despite this increased capacity, SpliDT maintains
low recirculation overhead (≤ 50 Mbps) and low time-to-
detection (TTD), demonstrating that ML models can operate
efficiently within the constraints of programmable switches.
• Challenges in Scaling Stateful Features. Existing ap-
proaches such as NetBeacon [5] and Leo [4] strictly limit
the number of stateful features to a small, fixed set (e.g.,
the top-: most important features), achieving higher accu-
racy than models limited to per-packet features but at the
cost of added stateful memory overhead. First, stateful fea-
tures are stored in registers, which share limited space with
match-action tables (MATs) in each pipeline stage—creating
a trade-off between feature storage and model complexity.

Corresponding author: Murayyiam Parvez (parvezm@purdue.edu)

Flow

NetBeacon,
Leo

Feature Collection

Inference

Window

Partition-based Collection/Inference

SpliDT: Scaling Data Plane Decision Trees with a
Collect-And-Predict Abstraction

Paper #86
13 Pages Body, 14 Pages Total

Abstract
Programmable switch architectures (such as RMT) have led
to a proliferation of machine-learning inference in the data
plane, including compute-intensive models such as neural
networks for applications (e.g., anomaly detection, malware
identification, and network traffic analysis). Despite the avail-
ability of compute power, network managers prefer the sim-
plicity and interpretability of decision trees. Ideally, decision
trees may use any number of traffic features with arbitrary
tree depth for best classification performance but existing
data-plane approximations restrict the maximum depth and
limit features to top-K to circumvent hardware resource lim-
itations, reducing the number of supported flows and classi-
fication accuracy.

In this paper, we show that existing data-plane approaches
are fundamentally limited by their design and cannot scale
across tree depth, number of features, or number of flows.We
present a general Collect-and-Predict (SpliDT1) abstraction
for performing inference in the data-plane and use it to scale
decision trees across all three dimensions. Our approach
leverages results from data-plane telemetry research indicat-
ing that queries performed on sliding-windows of packets of-
fer comparable performance as their flow-level counterparts.
Using this insight, we perform inference on sliding-windows
of packets—rather than flows—while reusing switch resources
across both features aswell as decision tree layers.We present
the design of a partitioned decision tree architecture to sup-
port window-based inference and a framework to search for
optimal model configurations to deliver best classification
accuracy for a given number of flows, all while fitting within
the limited switch resources.

1 INTRODUCTIONShah-
baz:
maybe
call
window-
based,
flowlets
in-
stead.

The rapid evolution of programmable data planes, exem-
plified by Reconfigurable Match-Action Table (RMT) archi-
tectures, has transformed modern networking by enabling
flexible and high-performance packet processing [9]. This
programmability has enabled the integration of machine-
learning (ML) models directly into the data-plane (such as
programmable switches [15, 16, 28, 30, 31, 33] and SmartNICs
[24, 32]) empowering networks to execute advanced infer-
ence tasks in real-time [10, 18, 26]. In-network ML leverages
1Here, collection implies feature engineering and prediction implies infer-
ence.

Flow

NetBeacon,
Leo

SpliDT

Feature Collection

Prediction

Window

Interval-based Collection/Prediction

Figure 1: One-short versus interval-based Feature Col-
lection and Prediction.

the computational capabilities of programmable switches
to analyze and classify traffic at line rate, making it partic-
ularly attractive for latency-sensitive and high-throughput
environments.

Recent advancements in programmable networks have
unlocked a new era of machine learning (ML) applications,
with state-of-the-art systems demonstrating capabilities in
IoT traffic classification [24, 32], traffic type classification
[33], anomaly detection [33] and network intrusion detec-
tion [5, 27]. These applications exemplify how embedding
ML directly into network infrastructure enables real-time
analytics and intelligent decision-making, redefining the
boundaries of in-network computation and security enforce-
ment. The programmability of modern networks has enabled
offloading these applications directly into the data plane,
reducing reliance on the control plane thereby maintaining
line-rate.This approach also enables fine-grained monitoring
and enforcement, allowing networks to dynamically respond
to evolving traffic patterns and security threats. As a result,
in-network ML not only enhances performance but also
provides a robust platform for strengthening security and
adaptability within the network.

Despite these advantages, implementing ML models in
the data plane presents significant challenges. Data plane
hardware imposes stringent constraints on memory, com-
pute resources, and pipeline depth, limiting the complex-
ity of models that can be deployed. Consequently, much of
the focus has shifted towards designing resource-efficient
models that balance predictive performance with hardware
constraints. While compute-intensive models such as neural
networks have also been successfully implemented for cer-
tain use cases, their opaque nature and resource demands
often hinder widespread adoption. In contrast, decision trees

1

Active
Subtree

Figure 1: Comparison of in-network DT classification.
Prior work (top) performs one-shot inference over full
flows. SpliDT (bottom) collects features and infers in-
crementally across partitions, scaling to more stateful
features and achieving higher F1 scores at line rate.

Increasing the number of registers or supporting more flows
further reduces available MAT stages, limiting DT depth and
restricting feature selection. Second, increasing the number
of stateful features also expands match key sizes, inflates
table entries, and exacerbates TCAM usage, making it harder
to map DTs onto the MATs [3–5].
Insight 1: Traditional designs [4, 5] face a three-way trade-
off between feature richness, scalability (flows), and model
complexity. We demonstrate that by decoupling stateful fea-
ture selection from DT execution, feature richness and scala-
bility can grow independentlywithout sacrificingmodel com-
plexity. SpliDT achieves this by dynamically selecting and
reusing stateful features across inference steps, efficiently
managing limited hardware resources.
• Domain-Specific Properties of DTs. DT inference begins
at the root node and proceeds level by level, making decisions
based on selected features until reaching a leaf. Instead of
evaluating the tree sequentially, we can group consecutive
levels into partitions and process one partition at a time.
Within each partition, inference traverses the active subtree,
whose outcome determines the next subtree to evaluate.
Insight 2: This subtree-by-subtree execution enables fea-
tures to be collected incrementally and on demand, as in-
ference progresses one partition at a time—where decisions
from the active subtree in one partition determine the next
subtree to traverse. With just : available feature slots, we can
dynamically load only the relevant features for the current
subtree, avoiding the rigid top-: selection imposed by prior
systems [4, 5].

1

mailto:parvezm@purdue.edu


●● ● ●● ● ●
● ● ●

● ●

●● ●
●● ●

● ● ● ● ●

●

●● ● ●● ●
●

● ● ● ●
●

0.15

0.26

0.38

0.49

0.60

100K 500K 1M
#Flows

F
1 

S
co

re

●

●

●

NB
Leo
SpliDT

D1

●● ● ●● ● ● ● ● ●

● ●

●● ● ●● ●

● ●
●

●
●

●

●● ● ●● ●

● ●

● ●

● ●

0.60

0.67

0.74

0.81

0.88

100K 500K 1M
#Flows

D2
●● ●

●● ●

●

● ● ● ● ●

●● ●
●● ●

● ●

● ● ● ●

●● ● ●● ●

●

● ● ● ● ●

0.15

0.32

0.50

0.67

0.85

100K 500K 1M
#Flows

D3

●● ● ●● ●

● ● ● ●

● ●

●● ● ●● ●

● ● ● ●

● ●

●● ●

●● ●
● ●

● ●
● ●

0.10

0.26

0.43

0.59

0.75

100K 500K 1M
#Flows

D4

●● ● ●● ●

● ●

● ● ● ●

●● ●
●● ●

● ●

● ●
●

●

●● ●
●● ●

● ●

● ● ● ●

0.05

0.15

0.25

0.35

0.45

100K 500K 1M
#Flows

D5

●● ● ●● ● ● ● ● ●
● ●

●● ● ●● ●

● ●

● ● ●

●

●● ● ●● ●
●

● ● ●

● ●

0.15

0.36

0.56

0.77

0.98

100K 500K 1M
#Flows

D6

●● ● ●● ● ● ● ● ●

● ●

●● ● ●● ●

● ● ● ● ●

●

●● ● ●● ● ●

● ● ●

● ●

0.35

0.51

0.68

0.84

1.00

100K 500K 1M
#Flows

D7

Figure 2: Pareto frontier of SpliDT vs. baselines, indicating the best F1 score for a given #flows in the data plane.

• Switch as a Time-Shared Resource. Programmable
switches are typically seen as spatial architectures with fixed
resource limits, where exceeding these constraints causes
compilation failures [1–3]. However, this static view over-
looks dynamic capabilities like packet recirculation, sup-
ported in modern switches (e.g., Tofino1 at 100Gbps [3])
without impacting line rate.
Insight 3: Recirculation enables temporal execution, allow-
ing different program stages (e.g., in P4 [1]) to run across
multiple passes and reuse limited resources such as registers
and match keys. By restructuring DTs in P4, we exploit this
behavior to scale inference beyond spatial limits—similar to
how CPUs reuse registers over time. We observe that the
recirculation usage stays within 20Mbps in different data-
center settings, well below the available 100Gbps bandwidth.

2 SPLIDT DESIGN
We now show how SpliDT leverages the domain-specific
properties of DTs and resource reuse through switch recir-
culation to optimize the F1 score–flow scalability tradeoff,
enabling full stateful feature support at line rate.
• Partitioned Inference Architecture. SpliDT’s partitioned
inference architecture operates in two phases: (1) feature
collection and engineering, and (2) subtree model predic-
tion—processing flow windows iteratively within each DT
partition by reusing resources such as registers and match
keys. SpliDTmaintains dedicated registers to track subtree ID
(SID), compute intermediate states, and store active stateful
features. Upon packet arrival, it hashes the 5-tuple to index
the correct register set and supports multi-stage dependency
chains for hierarchical feature computations. Operator selec-
tion is handled through match-action tables (MATs), which
dynamically apply the appropriate computation needed for
each feature in the current subtree, based on the SID. To
avoid unnecessary updates, feature computations can be
triggered conditionally (e.g., on SYN packets). During pre-
diction, encoded feature values and subtree IDs are matched
using range-marked MATs to determine the next subtree for
continued inference unless a flow is classified.

• Custom Search/Training Framework. SpliDT employs
Bayesian Optimization to explore Pareto-optimal decision
tree configurations that balance accuracy, flow scalability,
and hardware constraints. The search space includes parame-
ters such as tree depth, number of features per partition, and

partition sizes, with each iteration guided by feedback on
model performance and feasibility. A custom training algo-
rithm recursively builds partitioned trees, specializing each
subtree using only the flow windows that reach it during
training. For every candidate, the model is evaluated for accu-
racy, supported flows, and switch resource usage. Using the
Range Marking algorithm [5], SpliDT generates TCAM rules
for both feature encoding and model logic, installing them
per subtree, and determines feasibility through hardware
resource analysis.

3 PRELIMINARY RESULTS
We evaluate SpliDT on seven real-world datasets (D1–D7)
spanning security applications such as intrusion detection,
traffic classification, and detection of attacks like DoS, bot-
nets, and infiltration. Across all datasets, SpliDT consistently
outperforms baselines by achieving higher accuracy for the
same number of flows. By maintaining a better balance be-
tween model performance (i.e., accuracy) and scalability (i.e.,
flows), SpliDT defines the Pareto frontier (Figure 2). The
tradeoff curves are monotonically decreasing: models attain
higher accuracy with fewer flows and gradually sacrifice
model size and feature coverage to scale. Compared to state-
of-the-art methods [4, 5], SpliDT delivers better accuracy
while supporting up to 5× more stateful features and scaling
to 1 million flows, all while keeping recirculation overhead
≤ 50Mbps and time-to-detection low.

REFERENCES
[1] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-

nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. In ACM SIGCOMM CCR.

[2] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-Action Processing
in Hardware for SDN. In ACM SIGCOMM.

[3] Intel. last accessed: 12/31/2024. Tofino: P4-programmable Eth-
ernet switch ASIC that delivers better performance at lower
power. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html.

[4] Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and Mohit Tawar-
malani. 2024. Leo: Online ML-based Traffic Classification at Multi-
Terabit Line Rate. In USENIX NSDI.

[5] Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. 2023. An
Efficient Design of Intelligent Network Data Plane. In USENIX Security
Symposium.

2

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

	References

